1,109 research outputs found

    Financial government policy, 1940-1990

    Get PDF

    Het mededingingsbeleid in Nederland

    Get PDF

    Industriepolitiek

    Get PDF

    Dutch monetarism

    Get PDF

    Infinitary Combinatory Reduction Systems: Normalising Reduction Strategies

    Get PDF
    We study normalising reduction strategies for infinitary Combinatory Reduction Systems (iCRSs). We prove that all fair, outermost-fair, and needed-fair strategies are normalising for orthogonal, fully-extended iCRSs. These facts properly generalise a number of results on normalising strategies in first-order infinitary rewriting and provide the first examples of normalising strategies for infinitary lambda calculus

    A lambda calculus for quantum computation with classical control

    Full text link
    The objective of this paper is to develop a functional programming language for quantum computers. We develop a lambda calculus for the classical control model, following the first author's work on quantum flow-charts. We define a call-by-value operational semantics, and we give a type system using affine intuitionistic linear logic. The main results of this paper are the safety properties of the language and the development of a type inference algorithm.Comment: 15 pages, submitted to TLCA'05. Note: this is basically the work done during the first author master, his thesis can be found on his webpage. Modifications: almost everything reformulated; recursion removed since the way it was stated didn't satisfy lemma 11; type inference algorithm added; example of an implementation of quantum teleportation adde

    A Focused Sequent Calculus Framework for Proof Search in Pure Type Systems

    Get PDF
    Basic proof-search tactics in logic and type theory can be seen as the root-first applications of rules in an appropriate sequent calculus, preferably without the redundancies generated by permutation of rules. This paper addresses the issues of defining such sequent calculi for Pure Type Systems (PTS, which were originally presented in natural deduction style) and then organizing their rules for effective proof-search. We introduce the idea of Pure Type Sequent Calculus with meta-variables (PTSCalpha), by enriching the syntax of a permutation-free sequent calculus for propositional logic due to Herbelin, which is strongly related to natural deduction and already well adapted to proof-search. The operational semantics is adapted from Herbelin's and is defined by a system of local rewrite rules as in cut-elimination, using explicit substitutions. We prove confluence for this system. Restricting our attention to PTSC, a type system for the ground terms of this system, we obtain the Subject Reduction property and show that each PTSC is logically equivalent to its corresponding PTS, and the former is strongly normalising iff the latter is. We show how to make the logical rules of PTSC into a syntax-directed system PS for proof-search, by incorporating the conversion rules as in syntax-directed presentations of the PTS rules for type-checking. Finally, we consider how to use the explicitly scoped meta-variables of PTSCalpha to represent partial proof-terms, and use them to analyse interactive proof construction. This sets up a framework PE in which we are able to study proof-search strategies, type inhabitant enumeration and (higher-order) unification
    corecore