119 research outputs found
High-resolution LEED profile analysis and diffusion barrier estimation for submonolayer homoepitaxy of Ag/Ag(100)
We present a high-resolution low-energy electron diffraction study of two-dimensional island distributions formed by depositing 0.3 ML of Ag on Ag(100). The substrate temperature ranged between 170 and 295 K. From the ring structure or “splitting” of the diffraction profiles, we determine the behavior of the spatial correlation length characterizing the island distribution. The precise relationship between this correlation length and the mean island separation is also determined via an analysis of kinematic diffraction from island distributions in a realistic model of nucleation and growth. Resulting estimates of this separation are consistent with those based on results from a previous scanning tunneling microscopy study at 295 K. From the Arrhenius behavior of the correlation length, we estimate a terrace diffusion barrier for Ag on Ag(100) of 0.40 ±0.04eV, with a vibrational prefactor of about 3×1013s-1
Formation and Equilibration of Submonolayer Island Distributions in Ag/Ag(100) Homoepitaxy
We present an analysis both of the nucleation and growth of two-dimensional (2D) islands or clusters during deposition of Ag on Ag(100) at 295 K and of the subsequent postdeposition equilibration of such island distributions at coverages below about 0.25 monolayer. Island formation during deposition is shown to be effectively irreversible, and the island density and size and separation distributions are characterized using a combination of scanning tunneling microscopy (STM) and high-resolution low-energy electron diffraction. Postdeposition coarsening of the adlayer is monitored via STM and is shown to be dominated typically by diffusion and subsequent coalescence of large 2D clusters rather than by Ostwald ripening. Tailored studies of such coarsening elucidate both the kinetics and the underlying cluster diffusion process
Fast diffusion of a Lennard-Jones cluster on a crystalline surface
We present a Molecular Dynamics study of large Lennard-Jones clusters
evolving on a crystalline surface. The static and the dynamic properties of the
cluster are described. We find that large clusters can diffuse rapidly, as
experimentally observed. The role of the mismatch between the lattice
parameters of the cluster and the substrate is emphasized to explain the
diffusion of the cluster. This diffusion can be described as a Brownian motion
induced by the vibrationnal coupling to the substrate, a mechanism that has not
been previously considered for cluster diffusion.Comment: latex, 5 pages with figure
Diffusion of gold nanoclusters on graphite
We present a detailed molecular-dynamics study of the diffusion and
coalescence of large (249-atom) gold clusters on graphite surfaces. The
diffusivity of monoclusters is found to be comparable to that for single
adatoms. Likewise, and even more important, cluster dimers are also found to
diffuse at a rate which is comparable to that for adatoms and monoclusters. As
a consequence, large islands formed by cluster aggregation are also expected to
be mobile. Using kinetic Monte Carlo simulations, and assuming a proper scaling
law for the dependence on size of the diffusivity of large clusters, we find
that islands consisting of as many as 100 monoclusters should exhibit
significant mobility. This result has profound implications for the morphology
of cluster-assembled materials
Different W cluster deposition regimes in pulsed laser ablation observed by in situ Scanning Tunneling Microscopy
We report on how different cluster deposition regimes can be obtained and
observed by in situ Scanning Tunneling Microscopy (STM) by exploiting
deposition parameters in a pulsed laser deposition (PLD) process. Tungsten
clusters were produced by nanosecond Pulsed Laser Ablation in Ar atmosphere at
different pressures and deposited on Au(111) and HOPG surfaces. Deposition
regimes including cluster deposition-diffusion-aggregation (DDA), cluster
melting and coalescence and cluster implantation were observed, depending on
background gas pressure and target-to-substrate distance which influence the
kinetic energy of the ablated species. These parameters can thus be easily
employed for surface modification by cluster bombardment, deposition of
supported clusters and growth of films with different morphologies. The
variation in cluster mobility on different substrates and its influence on
aggregation and growth mechanisms has also been investigated.Comment: 12 pages (3 figures); Surface Science (accepted
Irreversible nucleation in molecular beam epitaxy: From theory to experiments
Recently, the nucleation rate on top of a terrace during the irreversible
growth of a crystal surface by MBE has been determined exactly. In this paper
we go beyond the standard model usually employed to study the nucleation
process, and we analyze the qualitative and quantitative consequences of two
important additional physical ingredients: the nonuniformity of the
Ehrlich-Schwoebel barrier at the step-edge, because of the existence of kinks,
and the steering effects, due to the interaction between the atoms of the flux
and the substrate. We apply our results to typical experiments of second layer
nucleation.Comment: 11 pages. Table I corrected and one appendix added. To be published
in Phys. Rev. B (scheduled issue: 15 February 2003
Quantum interference in nanofractals and its optical manifestation
We consider quantum interferences of ballistic electrons propagating inside
fractal structures with nanometric size of their arms. We use a scaling
argument to calculate the density of states of free electrons confined in a
simple model fractal. We show how the fractal dimension governs the density of
states and optical properties of fractal structures in the RF-IR region. We
discuss the effect of disorder on the density of states along with the
possibility of experimental observation.Comment: 19 pages, 6 figure
Ballistic nanofriction
Sliding parts in nanosystems such as Nano ElectroMechanical Systems (NEMS)
and nanomotors, increasingly involve large speeds, and rotations as well as
translations of the moving surfaces; yet, the physics of high speed nanoscale
friction is so far unexplored. Here, by simulating the motion of drifting and
of kicked Au clusters on graphite - a workhorse system of experimental
relevance -- we demonstrate and characterize a novel "ballistic" friction
regime at high speed, separate from drift at low speed. The temperature
dependence of the cluster slip distance and time, measuring friction, is
opposite in these two regimes, consistent with theory. Crucial to both regimes
is the interplay of rotations and translations, shown to be correlated in slow
drift but anticorrelated in fast sliding. Despite these differences, we find
the velocity dependence of ballistic friction to be, like drift, viscous
The process of irreversible nucleation in multilayer growth. I. Failure of the mean-field approach
The formation of stable dimers on top of terraces during epitaxial growth is
investigated in detail. In this paper we focus on mean-field theory, the
standard approach to study nucleation. Such theory is shown to be unsuitable
for the present problem, because it is equivalent to considering adatoms as
independent diffusing particles. This leads to an overestimate of the correct
nucleation rate by a factor N, which has a direct physical meaning: in average,
a visited lattice site is visited N times by a diffusing adatom. The dependence
of N on the size of the terrace and on the strength of step-edge barriers is
derived from well known results for random walks. The spatial distribution of
nucleation events is shown to be different from the mean-field prediction, for
the same physical reason. In the following paper we develop an exact treatment
of the problem.Comment: 19 pages, 3 figures. To appear in Phys. Rev.
Epitaxial growth of Cu on Cu(001): experiments and simulations
A quantitative comparison between experimental and Monte Carlo simulation
results for the epitaxial growth of Cu/Cu(001) in the submonolayer regime is
presented. The simulations take into account a complete set of hopping
processes whose activation energies are derived from semi-empirical
calculations using the embedded-atom method. The island separation is measured
as a function of the incoming flux and the temperature. A good quantitative
agreement between the experiment and simulation is found for the island
separation, the activation energies for the dominant processes, and the
exponents that characterize the growth. The simulation results are then
analyzed at lower coverages, which are not accessible experimentally, providing
good agreement with theoretical predictions as well.Comment: Latex document. 7 pages. 3 embedded figures in separate PS files. One
bbl fil
- …