119 research outputs found

    High-resolution LEED profile analysis and diffusion barrier estimation for submonolayer homoepitaxy of Ag/Ag(100)

    Get PDF
    We present a high-resolution low-energy electron diffraction study of two-dimensional island distributions formed by depositing 0.3 ML of Ag on Ag(100). The substrate temperature ranged between 170 and 295 K. From the ring structure or “splitting” of the diffraction profiles, we determine the behavior of the spatial correlation length characterizing the island distribution. The precise relationship between this correlation length and the mean island separation is also determined via an analysis of kinematic diffraction from island distributions in a realistic model of nucleation and growth. Resulting estimates of this separation are consistent with those based on results from a previous scanning tunneling microscopy study at 295 K. From the Arrhenius behavior of the correlation length, we estimate a terrace diffusion barrier for Ag on Ag(100) of 0.40 ±0.04eV, with a vibrational prefactor of about 3×1013s-1

    Formation and Equilibration of Submonolayer Island Distributions in Ag/Ag(100) Homoepitaxy

    Get PDF
    We present an analysis both of the nucleation and growth of two-dimensional (2D) islands or clusters during deposition of Ag on Ag(100) at 295 K and of the subsequent postdeposition equilibration of such island distributions at coverages below about 0.25 monolayer. Island formation during deposition is shown to be effectively irreversible, and the island density and size and separation distributions are characterized using a combination of scanning tunneling microscopy (STM) and high-resolution low-energy electron diffraction. Postdeposition coarsening of the adlayer is monitored via STM and is shown to be dominated typically by diffusion and subsequent coalescence of large 2D clusters rather than by Ostwald ripening. Tailored studies of such coarsening elucidate both the kinetics and the underlying cluster diffusion process

    Fast diffusion of a Lennard-Jones cluster on a crystalline surface

    Full text link
    We present a Molecular Dynamics study of large Lennard-Jones clusters evolving on a crystalline surface. The static and the dynamic properties of the cluster are described. We find that large clusters can diffuse rapidly, as experimentally observed. The role of the mismatch between the lattice parameters of the cluster and the substrate is emphasized to explain the diffusion of the cluster. This diffusion can be described as a Brownian motion induced by the vibrationnal coupling to the substrate, a mechanism that has not been previously considered for cluster diffusion.Comment: latex, 5 pages with figure

    Diffusion of gold nanoclusters on graphite

    Full text link
    We present a detailed molecular-dynamics study of the diffusion and coalescence of large (249-atom) gold clusters on graphite surfaces. The diffusivity of monoclusters is found to be comparable to that for single adatoms. Likewise, and even more important, cluster dimers are also found to diffuse at a rate which is comparable to that for adatoms and monoclusters. As a consequence, large islands formed by cluster aggregation are also expected to be mobile. Using kinetic Monte Carlo simulations, and assuming a proper scaling law for the dependence on size of the diffusivity of large clusters, we find that islands consisting of as many as 100 monoclusters should exhibit significant mobility. This result has profound implications for the morphology of cluster-assembled materials

    Different W cluster deposition regimes in pulsed laser ablation observed by in situ Scanning Tunneling Microscopy

    Full text link
    We report on how different cluster deposition regimes can be obtained and observed by in situ Scanning Tunneling Microscopy (STM) by exploiting deposition parameters in a pulsed laser deposition (PLD) process. Tungsten clusters were produced by nanosecond Pulsed Laser Ablation in Ar atmosphere at different pressures and deposited on Au(111) and HOPG surfaces. Deposition regimes including cluster deposition-diffusion-aggregation (DDA), cluster melting and coalescence and cluster implantation were observed, depending on background gas pressure and target-to-substrate distance which influence the kinetic energy of the ablated species. These parameters can thus be easily employed for surface modification by cluster bombardment, deposition of supported clusters and growth of films with different morphologies. The variation in cluster mobility on different substrates and its influence on aggregation and growth mechanisms has also been investigated.Comment: 12 pages (3 figures); Surface Science (accepted

    Irreversible nucleation in molecular beam epitaxy: From theory to experiments

    Full text link
    Recently, the nucleation rate on top of a terrace during the irreversible growth of a crystal surface by MBE has been determined exactly. In this paper we go beyond the standard model usually employed to study the nucleation process, and we analyze the qualitative and quantitative consequences of two important additional physical ingredients: the nonuniformity of the Ehrlich-Schwoebel barrier at the step-edge, because of the existence of kinks, and the steering effects, due to the interaction between the atoms of the flux and the substrate. We apply our results to typical experiments of second layer nucleation.Comment: 11 pages. Table I corrected and one appendix added. To be published in Phys. Rev. B (scheduled issue: 15 February 2003

    Quantum interference in nanofractals and its optical manifestation

    Full text link
    We consider quantum interferences of ballistic electrons propagating inside fractal structures with nanometric size of their arms. We use a scaling argument to calculate the density of states of free electrons confined in a simple model fractal. We show how the fractal dimension governs the density of states and optical properties of fractal structures in the RF-IR region. We discuss the effect of disorder on the density of states along with the possibility of experimental observation.Comment: 19 pages, 6 figure

    Ballistic nanofriction

    Full text link
    Sliding parts in nanosystems such as Nano ElectroMechanical Systems (NEMS) and nanomotors, increasingly involve large speeds, and rotations as well as translations of the moving surfaces; yet, the physics of high speed nanoscale friction is so far unexplored. Here, by simulating the motion of drifting and of kicked Au clusters on graphite - a workhorse system of experimental relevance -- we demonstrate and characterize a novel "ballistic" friction regime at high speed, separate from drift at low speed. The temperature dependence of the cluster slip distance and time, measuring friction, is opposite in these two regimes, consistent with theory. Crucial to both regimes is the interplay of rotations and translations, shown to be correlated in slow drift but anticorrelated in fast sliding. Despite these differences, we find the velocity dependence of ballistic friction to be, like drift, viscous

    The process of irreversible nucleation in multilayer growth. I. Failure of the mean-field approach

    Full text link
    The formation of stable dimers on top of terraces during epitaxial growth is investigated in detail. In this paper we focus on mean-field theory, the standard approach to study nucleation. Such theory is shown to be unsuitable for the present problem, because it is equivalent to considering adatoms as independent diffusing particles. This leads to an overestimate of the correct nucleation rate by a factor N, which has a direct physical meaning: in average, a visited lattice site is visited N times by a diffusing adatom. The dependence of N on the size of the terrace and on the strength of step-edge barriers is derived from well known results for random walks. The spatial distribution of nucleation events is shown to be different from the mean-field prediction, for the same physical reason. In the following paper we develop an exact treatment of the problem.Comment: 19 pages, 3 figures. To appear in Phys. Rev.

    Epitaxial growth of Cu on Cu(001): experiments and simulations

    Full text link
    A quantitative comparison between experimental and Monte Carlo simulation results for the epitaxial growth of Cu/Cu(001) in the submonolayer regime is presented. The simulations take into account a complete set of hopping processes whose activation energies are derived from semi-empirical calculations using the embedded-atom method. The island separation is measured as a function of the incoming flux and the temperature. A good quantitative agreement between the experiment and simulation is found for the island separation, the activation energies for the dominant processes, and the exponents that characterize the growth. The simulation results are then analyzed at lower coverages, which are not accessible experimentally, providing good agreement with theoretical predictions as well.Comment: Latex document. 7 pages. 3 embedded figures in separate PS files. One bbl fil
    • …
    corecore