45 research outputs found

    "Anche a lei è venuta la mania delle violette": desiderio omosociale femminile nel cinema italiano, 1940-1960

    Get PDF
    L'elaborato approfondisce la rappresentazione del desiderio omosociale femminile cinematografico, in particolare analizzando le relazioni femminili in alcuni film italiani del periodo tra l'inizio degli anni Quaranta e la fine degli anni Cinquanta. Nel primo e secondo capitolo vengono approfondite le principali teorie per l'analisi del desiderio omosociale, per cui il primo capitolo considera le formulazioni della teoria femminista e lesbica, in campo letterario e storico, con gli studi sull'amicizia romantica femminile nel periodo pre-novecentesco e le teorie sul desiderio omosociale maschile, nonché i suoi sviluppi sul femminile. Inoltre, vengono approfonditi i concetti di "compulsory heterosexuality" e "straight mind" per delineare la specificità letteraria della narrazione e dell'invisibilità lesbica, concludendo con riferimenti sulla rappresentazione del desiderio femminile letterario. Il secondo capitolo, dedicato ai modi di rappresentazione del lesbismo e alle teorie sul desiderio queer femminile in campo cinematografico, delinea, partendo dal canone hollywoodiano, le restituzioni filmiche del personaggio lesbico nel periodo di riferimento, poi fornisce un resoconto del lesbismo nel cinema italiano e infine approfondisce i possibili modi di lettura filmici del desiderio omosociale femminile in ottica queer. Il terzo, quarto e quinto capitolo forniscono una contestualizzazione del periodo cinematografico italiano di riferimento, per cui nel terzo capitolo si mostrano i principali modi di rappresentazione della femminilità dall'inizio degli anni Quaranta alla fine degli anni Cinquanta, mentre il quarto capitolo offre degli spunti d'interesse a livello di generi e filoni cinematografici per l'analisi delle relazioni omosociali, come il film collegiale, il melodramma e il "buddy film" femminile. Infine, nel quinto capitolo, viene analizzato, in alcuni dei testi filmici italiani del periodo, il desiderio omosociale nelle relazioni e nei personaggi femminili

    The role of inflammation in subventricular zone cancer

    Get PDF
    The adult subventricular zone (SVZ) stem cell niche has proven vital for discovering neurodevelopmental mechanisms and holds great potential in medicine for neurodegenerative diseases. Yet the SVZ holds a dark side - it can become tumorigenic. Glioblastomas can arise from the SVZ via cancer stem cells (CSCs). Glioblastoma and other brain cancers often have dismal prognoses since they are resistant to treatment. In this review we argue that the SVZ is susceptible to cancer because it contains stem cells, migratory progenitors and unusual inflammation. Theoretically, SVZ stem cells can convert to CSCs more readily than can postmitotic neural cells. Additionally, the robust long-distance migration of SVZ progenitors can be subverted upon tumorigenesis to an infiltrative phenotype. There is evidence that the SVZ, even in health, exhibits chronic low-grade cellular and molecular inflammation. Its inflammatory response to brain injuries and disease differs from that of other brain regions. We hypothesize that the SVZ inflammatory environment can predispose cells to novel mutations and exacerbate cancer phenotypes. This can be studied in animal models in which human mutations related to cancer are knocked into the SVZ to induce tumorigenesis and the CSC immune interactions that precede full-blown cancer. Importantly inflammation can be pharmacologically modulated providing an avenue to brain cancer management and treatment. The SVZ is accessible by virtue of its location surrounding the lateral ventricles and CSCs in the SVZ can be targeted with a variety of pharmacotherapies. Thus, the SVZ can yield aggressive tumors but can be targeted via several strategies

    Are treated celiac patients at risk for mycotoxins? An Italian case-study

    Get PDF
    Urinary biomarkers of mycotoxin exposure were evaluated in a group of celiac patients (n = 55) and in a control group of healthy subjects (n = 50) following their habitual diet. Deoxynivalenol (DON), zearalenone (ZEN), and fumonisin B1 (FB1) were monitored in 105 urinary samples collected from the two groups. Dietary habits were also recorded through compilation of a seven-day weighed dietary diary. Biomarkers of mycotoxin exposure were detected in 21 celiac patients and in 15 control subjects, corresponding to about 34% of total participants. In particular, ZEN was the most detected mycotoxin among all the studied subjects with a total of 19 positive cases. Results did not show a statistically significant difference in mycotoxin exposure between the two groups, and the presence of specific mycotoxins was not related to the intake of any particular food category. Our findings suggest little urgency of specific regulation for gluten free products, although the prevalence of exposure observed in free-living diets of both celiac and healthy subjects underlines the need of a constant surveillance on mycotoxins occurrence at large

    Cells lacking the fumarase tumor suppressor are protected from apoptosis through a hypoxia-inducible factor-independent, AMPK-dependent mechanism

    Get PDF
    Loss-of-function mutations of the tumor suppressor gene encoding fumarase (FH) occur in individuals with hereditary leiomyomatosis and renal cell cancer syndrome (HLRCC). We found that loss of FH activity conferred protection from apoptosis in normal human renal cells and fibroblasts. In FH-defective cells, both hypoxia-inducible factor 1α (HIF-1α) and HIF-2α accumulated, but they were not required for apoptosis protection. Conversely, AMP-activated protein kinase (AMPK) was activated and required, as evidenced by the finding that FH inactivation failed to protect AMPK-null mouse embryo fibroblasts (MEFs) and AMPK-depleted human renal cells. Activated AMPK was detected in renal cysts, which occur in mice with kidney-targeted deletion of Fh1 and in kidney cancers of HLRCC patients. In Fh1-null MEFs, AMPK activation was sustained by fumarate accumulation and not by defective energy metabolism. Addition of fumarate and succinate to kidney cells led to extracellular signal-regulated kinase 1/2 (ERK1/2) and AMPK activation, probably through a receptor-mediated mechanism. These findings reveal a new mechanism of tumorigenesis due to FH loss and an unexpected pro-oncogenic role for AMPK that is important in considering AMPK reactivation as a therapeutic strategy against cancer

    Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH Mutations in Glioblastoma

    Get PDF
    Isocitrate dehydrogenases (IDHs) catalyse oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG). IDH1 functions in the cytosol and peroxisomes, whereas IDH2 and IDH3 are both localized in the mitochondria. Heterozygous somatic mutations in IDH1 occur at codon 132 in 70% of grade II–III gliomas and secondary glioblastomas (GBMs), and in 5% of primary GBMs. Mutations in IDH2 at codon 172 are present in grade II–III gliomas at a low frequency. IDH1 and IDH2 mutations cause both loss of normal enzyme function and gain-of-function, causing reduction of α-KG to D-2-hydroxyglutarate (D-2HG) which accumulates. Excess hydroxyglutarate (2HG) can also be caused by germline mutations in D- and L-2-hydroxyglutarate dehydrogenases (D2HGDH and L2HGDH). If loss of IDH function is critical for tumourigenesis, we might expect some tumours to acquire somatic IDH3 mutations. Alternatively, if 2HG accumulation is critical, some tumours might acquire somatic D2HGDH or L2HGDH mutations. We therefore screened 47 glioblastoma samples looking for changes in these genes. Although IDH1 R132H was identified in 12% of samples, no mutations were identified in any of the other genes. This suggests that mutations in IDH3, D2HGDH and L2HGDH do not occur at an appreciable frequency in GBM. One explanation is simply that mono-allelic IDH1 and IDH2 mutations occur more frequently by chance than the bi-allelic mutations expected at IDH3, D2HGDH and L2HGDH. Alternatively, both loss of IDH function and 2HG accumulation might be required for tumourigenesis, and only IDH1 and IDH2 mutations have these dual effects

    Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche

    Get PDF
    Hereditary mixed polyposis syndrome (HMPS) is characterized by the development of mixed-morphology colorectal tumors and is caused by a 40-kb genetic duplication that results in aberrant epithelial expression of the gene encoding mesenchymal bone morphogenetic protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell fate that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem cell properties in Lgr5-negative progenitor cells that have exited the stem cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem cell is not the sole cell of origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic premalignant lesions with a hitherto unknown pathogenesis, and these lesions can be considered the sporadic equivalents of HMPS polyps

    Expression of <i>Idh1</i><sup>R132H</sup> in the murine subventricular zone stem cell niche recapitulates features of early gliomagenesis

    Get PDF
    Isocitrate dehydrogenase 1 mutations drive human gliomagenesis, probably through neomorphic enzyme activity that produces D-2-hydroxyglutarate. To model this disease, we conditionally expressed Idh1(R132H) in the subventricular zone (SVZ) of the adult mouse brain. The mice developed hydrocephalus and grossly dilated lateral ventricles, with accumulation of 2-hydroxyglutarate and reduced α-ketoglutarate. Stem and transit amplifying/progenitor cell populations were expanded, and proliferation increased. Cells expressing SVZ markers infiltrated surrounding brain regions. SVZ cells also gave rise to proliferative subventricular nodules. DNA methylation was globally increased, while hydroxymethylation was decreased. Mutant SVZ cells overexpressed Wnt, cell-cycle and stem cell genes, and shared an expression signature with human gliomas. Idh1(R132H) mutation in the major adult neurogenic stem cell niche causes a phenotype resembling gliomagenesis
    corecore