20 research outputs found

    Regenerating the womb: The good, bad and ugly potential of the endometrial stem cells

    No full text
    The human endometrium is a very dynamic tissue undergoing an extraordinary growth during pregnancy and, in a cyclic manner, during the reproductive life of each woman. Endometrial stem cells (ESCs), undifferentiated auto-renewable cells able to generate daughter cells showing a higher level of differentiation, play a fundamental role in endometrial regeneration and repair. Therefore, they have a great therapeutic potential in many diseases and research fields. However, recent data suggest that an irregular function of ESCs can contribute to the pathogenesis of endometriosis and other disorders. In addition, ESCs have also been found in human leiomyomas and malignant tumours, and could be involved in their development. In this review we analyze the enormous regenerative potential of endometrium, which is, unfortunately, not exempted from its negative effects. This coexists with the good one as two faces of the same coin and constitutes the risk behind the fundamental protective and regenerative mechanisms to defend reproduction, and therefore the miracle of life itself

    Clinical insights gained through metabolomic analysis of human breast milk

    Get PDF
    Introduction: Among the OMICS technologies, that have emerged in recent years, metabolomics has allowed relevant step forwards in clinical research. Several improvements in disease diagnosis and clinical management have been permitted, even in neonatology. Among potentially evaluable biofluids, breast milk (BM) results are highly interesting, representing a fluid of conjunction between mothers newborns, describing their interaction. Areas covered: in this review, updating a previous review article, we discuss research articles and reviews on BM metabolomics and found in MEDLINE using metabolomics, breast milk, neonatal nutrition, breastfeeding, human milk composition, and preterm neonates as keywords. Expert opinion: Our research group has a profound interest in metabolomics research. In 2012, we published the first metabolomic analysis on BM samples, reporting interesting data on its composition and relevant differences with formula milk (FM), useful to improve FM composition. As confirmed by successive studies, such technology can detect the specific BM composition and its dependence on several variables, including lactation stage, gestational age, maternal or environmental conditions. Moreover, since BM contaminants or drug levels can be detected, metabolomics also results useful to determine BM safety. These are only a few practical applications of BM analysis, which will be reviewed in this paper

    Differential diagnosis between syndrome of inappropriate antidiuretic hormone secretion and cerebral/renal salt wasting syndrome in children over 1 year: proposal for a simple algorithm

    No full text
    Hyponatremia, especially if acute and severe, can be a life-threatening condition. Several conditions can trigger hyponatremia. In this review, we will discuss two conditions that can determine euvolemic hyponatremia: the cerebral/renal salt wasting (CRSW) syndrome and the syndrome of inappropriate secretion of antidiuretic hormone (SIADH), including the two subtypes: reset osmostat (RO) and nephrogenic syndrome of inappropriate antidiuresis (NSIAD) and their differential diagnoses. Despite the passage of over 70 years since its first description, to date, the true etiopathogenesis of CRSW syndrome, a rare cause of hypovolemic/euvolemic hyponatremia, is almost unknown. SIADH, including RO and NSIAD, is sometimes difficult to differentiate from CRSW syndrome; in its differential diagnosis, the clinical approach based on the evaluation of the extracellular volume (ECV) was proven insufficient. We therefore suggest a simple diagnostic algorithm based on the assessment of the degree of hyponatremia, urinary osmolality, and the assessment of the fraction of urate excretion (FEUa) in conditions of hyponatremia and after serum sodium correction, to be applied in children over 1 year of life

    When a neonate is born, so is a microbiota

    No full text
    In recent years, the role of human microbiota as a short-and long-term health promoter and modulator has been affirmed and progressively strengthened. In the course of one’s life, each subject is colonized by a great number of bacteria, which constitute its specific and individual microbiota. Human bacterial colonization starts during fetal life, in opposition to the previous paradigm of the “sterile womb”. Placenta, amniotic fluid, cord blood and fetal tissues each have their own specific microbiota, influenced by maternal health and habits and having a decisive influence on pregnancy outcome and offspring outcome. The maternal microbiota, especially that colonizing the genital system, starts to influence the outcome of pregnancy already before conception, modulating fertility and the success rate of fertilization, even in the case of assisted reproduction techniques. During the perinatal period, neonatal microbiota seems influenced by delivery mode, drug administration and many other conditions. Special attention must be reserved for early neonatal nutrition, because breastfeeding allows the transmission of a specific and unique lactobiome able to modulate and positively affect the neonatal gut microbiota. Our narrative review aims to investigate the currently identified pre-and peri-natal factors influencing neonatal microbiota, before conception, during pregnancy, pre-and post-delivery, since the early microbiota influences the whole life of each subject

    Inflammatory Bowel Disease and COVID-19: How Microbiomics and Metabolomics Depict Two Sides of the Same Coin

    No full text
    The integrity of the gastrointestinal tract structure and function is seriously compromised by two pathological conditions sharing, at least in part, several pathogenetic mechanisms: inflammatory bowel diseases (IBD) and coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. IBD and COVID-19 are marked by gut inflammation, intestinal barrier breakdown, resulting in mucosal hyperpermeability, gut bacterial overgrowth, and dysbiosis together with perturbations in microbial and human metabolic pathways originating changes in the blood and fecal metabolome. This review compared the most relevant metabolic and microbial alterations reported from the literature in patients with IBD with those in patients with COVID-19. In both diseases, gut dysbiosis is marked by the prevalence of pro-inflammatory bacterial species and the shortfall of anti-inflammatory species; most studies reported the decrease in Firmicutes, with a specific decrease in obligately anaerobic producers short-chain fatty acids (SCFAs), such as Faecalibacterium prausnitzii. In addition, Escherichia coli overgrowth has been observed in IBD and COVID-19, while Akkermansia muciniphila is depleted in IBD and overexpressed in COVID-19. In patients with COVID-19, gut dysbiosis continues after the clearance of the viral RNA from the upper respiratory tract and the resolution of clinical symptoms. Finally, we presented and discussed the impact of gut dysbiosis, inflammation, oxidative stress, and increased energy demand on metabolic pathways involving key metabolites, such as tryptophan, phenylalanine, histidine, glutamine, succinate, citrate, and lipids

    Early Urinary Metabolomics in Patent Ductus Arteriosus Anticipates the Fate: Preliminary Data

    No full text
    Introduction: In premature neonates, the persistence of hemodynamically significant ductus arteriosus (hsPDA) can be associated with short- and long-term consequences, impairing their outcome. The correct strategy of management for such condition is under debate, especially regarding contraindications and/or side effects. In recent years, metabolomics was applied to several perinatal, pediatric, and adult conditions to investigate potential biomarkers of disease, which have become useful for early diagnosis and/or therapeutic management. Aim of the Study: The main purpose of our exploratory study was to asses, through 1H-NMR metabolomics analysis of urinary samples at birth, possible metabolic pathways differentiating, with a significant predictive power, those preterm neonates who will subsequently develop hsPDA and neonates of comparable gestational age (GA) who will undergo spontaneous ductal closure or the persistence of an irrelevant PDA (no-hsPDA). Moreover, we investigated potential prenatal or perinatal clinical factors potentially influencing the development of hsPDA. Materials and Methods: We enrolled n = 35 preterm neonates with GA between 24 and 32 weeks; urinary samples were collected within the first 12 h of life. Patients were closely monitored regarding intensive care, respiratory support, fluid balance and administered drugs; an echocardiogram was performed at 48–72 h. Results: Our results reported a significant correlation between lower GA at birth and the development of hsPDA. Moreover, neonates with GA ≤ 30w developing hsPDA were characterized by lower Apgar scores at 1′ and 5′, higher rates of perinatal asphyxia, higher need of delivery room resuscitation and subsequent surfactant administration. Interestingly, metabolomics analysis at birth detected a clear separation between the 1H-NMR urinary spectra of subjects GA ≤ 30w not developing hsPDA (n = 19) and those of subjects born at GA ≤ 30w in which hsPDA was confirmed at 48–72 h of life (n = 5). Conclusions: This is the first study applying metabolomics to investigate the PDA condition. Although preliminary and conducted on a limited sample, our results reveal that metabolomics could be a promising tool in the early identification of hsPDA, potentially superior to the clinical or laboratory predictive tools explored to date and even to the clinical observations and correlations in our sample, through the detection of specific urinary metabolites

    Risk, course, and effect of sars-cov-2 infection in children and adults with chronic inflammatory bowel diseases

    No full text
    Susceptibility and disease course of COVID-19 among patients with inflammatory bowel diseases (IBD) are unclear and epidemiological data on the topic are still limited. There is some concern that patients with immuno-mediated diseases such as IBD, which are frequently treated with immunosuppressive therapies, may have an increased risk of SARS-CoV-2 infection with its related serious adverse outcomes, including intensive care unit (ICU) admission and death. Corticosteroids, immunomodulators, and biologic drugs, which are commonly prescribed to these patients, have been associated with higher rates of severe viral and bacterial infections including influenza and pneumonia. It is not known whether these drugs can be so harmful as to justify their interruption during COVID-19 infection or if, on the contrary, patients with IBD can benefit from them. As shown by recent reports, it cannot be excluded that drugs that suppress the immune system can block the characteristic cytokine storm of severe forms of COVID-19 and consequently reduce mortality. Another cause for concern is the up-regulation of angiotensin converting enzyme-2 (ACE2) receptors that has been noticed in these patients, which could facilitate the entry and replication of SARS-CoV-2. The aim of this narrative review is to clarify the susceptibility of SARS-CoV-2 infection in patients with IBD, the clinical characteristics of patients who contract the infection, and the relationship between the severity of COVID-19 and immunosuppressive treatment

    COVID-19 and school: To open or not to open, that is the question: To first review on current knowledge

    No full text
    The COVID-19 pandemic has led to an unprecedented closure of schools in terms of duration. The option of school closure, SARS-CoV-2 initially being poorly known, was influenced by the epidemiological aspects of the influenza virus. However, school closure is still under debate and seems unsupported by sure evidence of efficacy in the COVID-19 era. The aim of our narrative review is to discuss the available literature on SARS-CoV-2 spread among children and adolescents, in the school setting, trying to explain why children appear less susceptible to severe disease and less involved in viral spreading. We also tried to define the efficacy of school closure, through an overview of the effects of the choices made by the various countries, trying to identify which preventive measures could be effective for a safe reopening. Finally, we focused on the psychological aspects of such a prolonged closure for children and adolescents. SARS-CoV-2, children, COVID-19, influenza, and school were used as key words in our literature research, updated to 29 March 2021. To our knowledge, this is the first review summarizing the whole current knowledge on SARS-CoV-2 spreading among children and adolescents in the school setting, providing a worldwide overview in such a pandemic context
    corecore