35 research outputs found

    Mysterious Dust-emitting Object Orbiting TIC 400799224

    Get PDF
    We report the discovery of a unique object of uncertain nature - but quite possibly a disintegrating asteroid or minor planet - orbiting one star of the widely separated binary TIC 400799224. We initially identified the system in data from TESS Sector 10 via an abnormally shaped fading event in the light curve (hereafter "dips"). Follow-up speckle imaging determined that TIC 400799224 is actually two stars of similar brightness at 0.″62 separation, forming a likely bound binary with projected separation of ∼300 au. We cannot yet determine which star in the binary is host to the dips in flux. ASAS-SN and Evryscope archival data show that there is a strong periodicity of the dips at ∼19.77 days, leading us to believe that an occulting object is orbiting the host star, though the duration, depth, and shape of the dips vary substantially. Statistical analysis of the ASAS-SN data shows that the dips only occur sporadically at a detectable threshold in approximately one out of every three to five transits, lending credence to the possibility that the occulter is a sporadically emitted dust cloud. The cloud is also fairly optically thick, blocking up to 37% or 75% of the light from the host star, depending on the true host. Further observations may allow for greater detail to be gleaned as to the origin and composition of the occulter, as well as to a determination of which of the two stars comprising TIC 400799224 is the true host star of the dips

    Pion contamination in the MICE muon beam

    Get PDF
    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than ∼\sim1\% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is fπ<1.4%f_\pi < 1.4\% at 90\% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.Department of Energy and National Science Foundation (U.S.A.), the Instituto Nazionale di Fisica Nucleare (Italy), the Science and Technology Facilities Council (U.K.), the European Community under the European Commission Framework Programme 7 (AIDA project, grant agreement no. 262025, TIARA project, grant agreement no. 261905, and EuCARD), the Japan Society for the Promotion of Science and the Swiss National Science Foundation, in the framework of the SCOPES programme

    KOI-3158: The oldest known system of terrestrial-size planets

    Get PDF
    The first discoveries of exoplanets around Sun-like stars have fueled efforts to find ever smaller worlds evocative of Earth and other terrestrial planets in the Solar System. While gas-giant planets appear to form preferentially around metal-rich stars, small planets (with radii less than four Earth radii) can form under a wide range of metallicities. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the Universe's history when metals were far less abundant. We report Kepler spacecraft observations of KOI-3158, a metal-poor Sun-like star from the old population of the Galactic thick disk, which hosts five planets with sizes between Mercury and Venus. We used asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that KOI-3158 formed when the Universe was less than 20 % of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the Universe's 13.8-billion-year history, providing scope for the existence of ancient life in the Galaxy

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Lambeau saphène

    No full text

    Technique du «cross-leg»

    No full text
    corecore