6,031 research outputs found

    Artificial neural network prediction of weld distortion rectification using a travelling induction coil

    Get PDF
    An experimental investigation has been carried out to determine the applicability of an induction heating process with a travelling induction coil for the rectification of angular welding distortion. The results obtained from experimentation have been used to create artificial neural network models with the ability to predict the welding induced distortion and the distortion rectification achieved using a travelling induction coil. The experimental results have shown the ability to reduce the angular distortion for 8 mm and 10 mm thick DH36 steel plate and effectively eliminate the distortion on 6 mm thick plate. Results for 6 mm plate also show the existence of a critical induction coil travel speed at which maximum corrective bending occurs. Artificial neural networks have demonstrated the ability to predict the final distortion of the plate after both welding and induction heating. The models have also been used as a tool to determine the optimum speed to minimise the resulting distortion of steel plate after being subjected to both welding and induction heating processes

    Supersymmetric quantum mechanics based on higher excited states

    Full text link
    We generalize the formalism and the techniques of the supersymmetric (susy) quantum mechanics to the cases where the superpotential is generated/defined by higher excited eigenstates. The generalization is technically almost straightforward but physically quite nontrivial since it yields an infinity of new classes of susy-partner potentials, whose spectra are exactly identical except for the lowest m+1 states, if the superpotential is defined in terms of the (m+1)-st eigenfunction, with m=0 reserved for the ground state. It is shown that in case of the infinite 1-dim potential well nothing new emerges (the partner potential is still of P\"oschl-Teller type I, for all m), whilst in case of the 1-dim harmonic oscillator we get a new class of infinitely many partner potentials: for each m the partner potential is expressed as the sum of the quadratic harmonic potential plus rational function, defined as the derivative of the ratio of two consecutive Hermite polynomials. These partner potentials of course have m singularities exactly at the locations of the nodes of the generating (m+1)-st wavefunction. The susy formalism applies everywhere between the singularities. A systematic application of the formalism to other potentials with known spectra would yield an infinitely rich class of "solvable" potentials, in terms of their partner potentials. If the potentials are shape invariant they can be solved at least partially and new types of analytically obtainable spectra are expected. PACS numbers: 03.65.-w, 03.65.Ge, 03.65.SqComment: 15 pages LaTeX file, no figures, submitted to J. Phys. A: accepted for publication

    Urgent challenges in implementing live attenuated influenza vaccine.

    Get PDF
    Conflicting reports have emerged about the effectiveness of the live attenuated influenza vaccine. The live attenuated influenza vaccine appears to protect particularly poorly against currently circulating H1N1 viruses that are derived from the 2009 pandemic H1N1 viruses. During the 2015-16 influenza season, when pandemic H1N1 was the predominant virus, studies from the USA reported a complete lack of effectiveness of the live vaccine in children. This finding led to a crucial decision in the USA to recommend that the live vaccine not be used in 2016-17 and to switch to the inactivated influenza vaccine. Other countries, including the UK, Canada, and Finland, however, have continued to recommend the use of the live vaccine. This policy divergence and uncertainty has far reaching implications for the entire global community, given the importance of the production capabilities of the live attenuated influenza vaccine for pandemic preparedness. In this Personal View, we discuss possible explanations for the observed reduced effectiveness of the live attenuated influenza vaccine and highlight the underpinning scientific questions. Further research to understand the reasons for these observations is essential to enable informed public health policy and commercial decisions about vaccine production and development in coming years

    Properties of implanted and CVD incorporated nitrogen-vacancy centers: preferential charge state and preferential orientation

    Get PDF
    The combination of the long electron state spin coherence time and the optical coupling of the ground electronic states to an excited state manifold makes the nitrogen-vacancy (NV) center in diamond an attractive candidate for quantum information processing. To date the best spin and optical properties have been found in centers deep within the diamond crystal. For useful devices it will be necessary to engineer NVs with similar properties close to the diamond surface. We report on properties including charge state control and preferential orientation for near surface NVs formed either in CVD growth or through implantation and annealing

    Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide

    Full text link
    The optical coupling of guided modes in a GaP waveguide to nitrogen-vacancy (NV) centers in diamond is demonstrated. The electric field penetration into diamond and the loss of the guided mode are measured. The results indicate that the GaP-diamond system could be useful for realizing coupled microcavity-NV devices for quantum information processing in diamond.Comment: 4 pages 4 figure

    Using a well-being approach to develop a framework for an integrated socio-economic evaluation of professional fishing

    Get PDF
    © 2017 John Wiley & Sons Ltd The principles of Ecologically Sustainable Development and Ecosystem Based Fisheries Management require that fisheries be managed for social as well as environmental and economic objectives. Comprehensive assessments of the success of fisheries in achieving all three objectives are, however, rare. There are three main barriers to achieving integrated assessments of fisheries. Firstly, disciplinary divides can be considered “too hard” to bridge with inherent conflicts between the predominately empirical and deductive traditions of economics and biophysical sciences and the inductive and interpretative approach of much of the social sciences. Secondly, understanding of the social pillar of sustainability is less well developed. And finally, in-depth analysis of the social aspects of sustainability often involves qualitative analysis and there are practical difficulties in integrating this with largely quantitative economic and ecological assessments. This article explores the social well-being approach as a framework for an integrated evaluation of the social and economic benefits that communities in New South Wales, Australia, receive from professional fish harvesting. Using a review of existing literature and qualitative interviews with more than 160 people associated with the fishing industry the project was able to identify seven key domains of community well-being to which the industry contributes. Identification of these domains provided a framework through which industry contributions could be further explored, through quantitative surveys and economic analysis. This framework enabled successful integration of social and economic, and both qualitative and quantitative information in a manner that enabled a comprehensive assessment of the value of the fishery
    • …
    corecore