4 research outputs found

    The broad-band properties of the intermediate synchrotron peaked BL Lac S2 0109+22 from radio to VHE gamma-rays

    Get PDF
    The Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes observed S2 0109+22 in 2015 July during its flaring activity in high-energy gamma-rays observed by Fermi-Large Area Telescope. We analyse the MAGIC data to characterize the very high energy (VHE) gamma-ray emission of S2 0109+22, which belongs to the subclass of intermediate synchrotron peak (ISP) BL Lacertae (BL Lac) objects. We study the multifrequency emission in order to investigate the source classification. Finally, we compare the source long-term behaviour to other VHE gamma-ray emitting (TeV) blazars. We performed a temporal and spectral analysis of the data centred around the MAGIC interval of observation (MJD 57225-57231). Long-term radio and optical data have also been investigated using the discrete correlation function. The redshift of the source is estimated through optical host-galaxy imaging and also using the amount of VHE gamma-ray absorption. The quasi-simultaneous multifrequency spectral energy distribution (SED) is modelled with the conventional one-zone synchrotron self-Compton (SSC) model. MAGIC observations resulted in the detection of the source at a significance level of 5.3 sigma. The VHE gamma-ray emission of S2 0109+22 is variable on a daily time scale. VHE gamma-ray luminosity of the source is lower than the average of TeV BL Lacs. The optical polarization and long-term optical/radio behaviour of the source are different from the general population of TeV blazars. All these findings agree with the classification of the source as an ISP BL Lac object. We estimate the source redshift as z = 0.36 +/- 0.07. The SSC parameters describing the SED are rather typical for blazars

    Association of polymorphism within LTF gene promoter with lactoferrin concentration in milk of Holstein cows

    No full text
    This study analyzed the association between single nucleotide polymorphism (A/C) in position -28 located in the TATA box of LTF gene and the lactoferrin concentration in bovine milk secreted by healthy and infected udders. Out of 241, 69 cows were selected into the experimental group and were divided into 3 groups according to mean value of somatic cell count (SCC): I 350 000 cells/mL. In each SCC group, three LTF genotypes: AA, AC and CC were identified by PCR-SSCP method. A total of 604 milk samples were collected monthly and lactoferrin concentration was measured by ELISA. The 1-way ANOVA within SCC groups was performed to estimate association of -28 A/C genotypes with mean lactoferrin concentration per lactation. In the group of healthy cows (350 000 cells/mL) we observed a significant opposite relationship (207.21 ± 28.50 in CC vs 115.0 ± 28.6 μg/mL in AA). We hypothesized that a promoter with allele C, which cannot be recognized as a TATA sequence is becoming more accessible for other transcription factors, which may induce alternative LTF gene expression. We assume that our results demonstrate a very interesting effect of differential gene expression depending on polymorphism in a key regulatory motif (TATA box) and also on the health status of mammary tissues

    Screening of Polish Holstein-Friesian bulls towards eradication of Complex Vertebral Malformation (CVM) carriers

    No full text
    The effectiveness of a program aimed at eradicating carriers of the recessive disorder Complex Vertebral Malformation (CVM) from the population of Holstein-Friesian bulls is reported. Among 1823 bulls, 1268 young and 555 proven bulls were examined. Three hundred and three bulls appeared to be CVM carriers (16.62%). The highest number of carriers occurred in the sons of a CVM sire, 55.51% and 61.90%, for proven and young bulls, respectively. This very high incidence of CVM carriers forced us to implement a strategy of screening young bulls offered by individual breeders to insemination centers. In effect, the number of CVM carriers dramatically dropped among proven bulls born in 2004 and disappeared in bulls born in 2006

    The broad-band properties of the intermediate synchrotron peaked BL Lac S2 0109+22 from radio to VHE gamma-rays

    Get PDF
    The Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes observed S2 0109+22 in 2015 July during its flaring activity in high-energy gamma-rays observed by Fermi-Large Area Telescope. We analyse the MAGIC data to characterize the very high energy (VHE) gamma-ray emission of S2 0109+22, which belongs to the subclass of intermediate synchrotron peak (ISP) BL Lacertae (BL Lac) objects. We study the multifrequency emission in order to investigate the source classification. Finally, we compare the source longterm behaviour to other VHE gamma-ray emitting (TeV) blazars. We performed a temporal and spectral analysis of the data centred around the MAGIC interval of observation (MJD 57225-57231). Long-term radio and optical data have also been investigated using the discrete correlation function. The redshift of the source is estimated through optical host-galaxy imaging and also using the amount of VHE gamma-ray absorption. The quasi-simultaneous multifrequency spectral energy distribution (SED) is modelled with the conventional one-zone synchrotron self-Compton (SSC) model. MAGIC observations resulted in the detection of the source at a significance level of 5.3s. The VHE gamma-ray emission of S2 0109+22 is variable on a daily time scale. VHE gamma-ray luminosity of the source is lower than the average of TeV BL Lacs. The optical polarization and long-term optical/radio behaviour of the source are different from the general population of TeV blazars. All these findings agree with the classification of the source as an ISP BL Lac object. We estimate the source redshift as z = 0.36 ± 0.07. The SSC parameters describing the SED are rather typical for blazars
    corecore