2 research outputs found

    Biotechnological Transformation of Hydrocortisone into 16α-Hydroxyprednisolone by Coupling Arthrobacter simplex and Streptomyces roseochromogenes

    Get PDF
    16α-Hydroxyprednisolone, an anti-inflammatory drug, could be potentially obtained from hydrocortisone bioconversion by combining a 1,2-dehydrogenation reaction performed by Arthrobacter simplexATCC31652 with a 16α-hydroxylation reaction by Streptomyces roseochromogenes ATCC13400. In this study we tested, for the first time, potential approaches to couple the two reactions using similar pH and temperature conditions for hydrocortisone bioconversion by the two strains. The A. simplex capability to 1,2-dehydrogenate the 16α-hydroxyhydrocortisone, the product of S. roseochromogenes transformation of hydrocortisone, and vice versa the capability of S. roseochromogenes to 16α-hydroxylate the prednisolone were assessed. Bioconversions were studied in shake flasks and strain morphology changes were observed by SEM. Whole cell experiments were set up to perform the two reactions in a sequential mode in alternate order or contemporarily at diverse temperature conditions. A. simplex catalyzed either the dehydrogenation of hydrocortisone into prednisolone efficiently or of 16α-hydroxyhydrocortisone into 16α-hydroxyprednisolone in 24 h (up to 93.9%). Surprisingly S. roseochromogenes partially converted prednisolone back to hydrocortisone. A 68.8% maximum of 16α-hydroxyprednisolone was obtained in 120-h bioconversion by coupling whole cells of the two strains at pH 6.0 and 26 °C. High bioconversion of hydrocortisone into 16α-hydroxyprednisolone was obtained for the first time by coupling A. simplex and S. roseochromogenes

    Production and purification of higher molecular weight chondroitin by metabolically engineered Escherichia coli K4 strains

    No full text
    The capsular polysaccharide obtained from Escherichia coli K4 is a glycosaminoglycan-like molecule, similar to chondroitin sulphate, that has established applications in the biomedical field. Recent efforts focused on the development of strategies to increase K4 polysaccharide fermentation titers up to technologically attractive levels, but an aspect that has not been investigated so far, is how changes in the molecular machinery that produces this biopolymer affect its molecular weight. In this work, we took advantage of recombinant E. coli K4 strains that overproduce capsular polysaccharide, to study whether the inferred pathway modifications also influenced the size of the produced polymer. Fed-batch fermentations were performed up to the 22 L scale, in potentially industrially applicable conditions, and a purification protocol that allows in particular the recovery of high molecular weight unsulphated chondroitin, was developed next. This approach allowed to determine the molecular weight of the purified polysaccharide, demonstrating that kfoF overexpression increased polymer size up to 133 kDa. Higher polysaccharide titers and size were also correlated to increased concentrations of UDP-GlcA and decreased concentrations of UDP-GalNAc during growth. These results are interesting also in view of novel potential applications of higher molecular weight chondroitin and chondroitin sulphate in the biomedical field
    corecore