679 research outputs found

    Emergence of chaotic scattering in ultracold Er and Dy

    Full text link
    We show that for ultracold magnetic lanthanide atoms chaotic scattering emerges due to a combination of anisotropic interaction potentials and Zeeman coupling under an external magnetic field. This scattering is studied in a collaborative experimental and theoretical effort for both dysprosium and erbium. We present extensive atom-loss measurements of their dense magnetic Feshbach resonance spectra, analyze their statistical properties, and compare to predictions from a random-matrix-theory inspired model. Furthermore, theoretical coupled-channels simulations of the anisotropic molecular Hamiltonian at zero magnetic field show that weakly-bound, near threshold diatomic levels form overlapping, uncoupled chaotic series that when combined are randomly distributed. The Zeeman interaction shifts and couples these levels, leading to a Feshbach spectrum of zero-energy bound states with nearest-neighbor spacings that changes from randomly to chaotically distributed for increasing magnetic field. Finally, we show that the extreme temperature sensitivity of a small, but sizeable fraction of the resonances in the Dy and Er atom-loss spectra is due to resonant non-zero partial-wave collisions. Our threshold analysis for these resonances indicates a large collision-energy dependence of the three-body recombination rate

    Clostridium difficile ribotypes in Austria: a multicenter, hospital-based survey

    Get PDF
    A prospective, noninterventional survey was conducted among Clostridium difficile positive patients identified in the time period of July until October 2012 in 18 hospitals distributed across all nine Austrian provinces. Participating hospitals were asked to send stool samples or isolates from ten successive patients with C.difficile infection to the National Clostridium difficile Reference Laboratory at the Austrian Agency for Health and Food Safety for PCR-ribotyping and in vitro susceptibility testing. A total of 171 eligible patients were identified, including 73 patients with toxin-positive stool specimens and 98 patients from which C. difficile isolates were provided. Of the 159 patients with known age, 127 (74.3 %) were 65 years or older, the median age was 76 years (range: 9–97 years), and the male to female ratio 2.2. Among these patients, 73 % had health care-associated and 20 % community-acquired C. difficile infection (indeterminable 7 %). The all-cause, 30-day mortality was 8.8 % (15/171). Stool samples yielded 46 different PCR-ribotypes, of which ribotypes 027 (20 %), 014 (15.8 %), 053 (10.5 %), 078 (5.3 %), and 002 (4.7 %) were the five most prevalent. Ribotype 027 was found only in the provinces Vienna, Burgenland, and Lower Austria. Severe outcome of C. difficile infection was found to be associated with ribotype 053 (prevalence ratio: 3.04; 95 % CI: 1.24, 7.44), not with the so-called hypervirulent ribotypes 027 and 078. All 027 and 053 isolates exhibited in vitro resistance against moxifloxacin. Fluoroquinolone use in the health care setting must be considered as a factor favoring the spread of these fluoroquinolone resistant C. difficile clones

    KP line solitons and Tamari lattices

    Full text link
    The KP-II equation possesses a class of line soliton solutions which can be qualitatively described via a tropical approximation as a chain of rooted binary trees, except at "critical" events where a transition to a different rooted binary tree takes place. We prove that these correspond to maximal chains in Tamari lattices (which are poset structures on associahedra). We further derive results that allow to compute details of the evolution, including the critical events. Moreover, we present some insights into the structure of the more general line soliton solutions. All this yields a characterization of possible evolutions of line soliton patterns on a shallow fluid surface (provided that the KP-II approximation applies).Comment: 49 pages, 36 figures, second version: section 4 expande

    a pilot study, 2013

    Get PDF
    Introduction After recognition of European outbreaks of Clostridium difficile infections (CDIs) associated with the emergence of PCR ribotype 027/NAP1 in 2005, CDI surveillance at country level was encouraged by the European Centre for Disease Prevention and Control (ECDC) [1]. In 2008, an ECDC-supported European CDI survey (ECDIS) identified large intercountry variations in incidence rates and distribution of prevalent PCR ribotypes, with the outbreak-related PCR ribotype 027 being detected in 5% (range: 0–26) of the characterised isolates [2]. The surveillance period was limited to one month and the representation of European hospitals was incomplete; however, this has been the only European (comprising European Union (EU)/European Economic Area (EEA) and EU candidate countries) CDI surveillance study. The authors highlighted the need for national and European surveillance to control CDI. Yet, European countries were found to have limited capacity for diagnostic testing, particularly in terms of standard use of optimal methods and absence of surveillance protocols and a fully validated, standardised and exchangeable typing system for surveillance and/or outbreak investigation. As of 2011, 14 European countries had implemented national CDI surveillance, with various methodologies [3]. National surveillance systems have since reported a decrease in CDI incidence rate and/or prevalence of PCR ribotype 027 in some European countries [4-8]. However, CDI generally remains poorly controlled in Europe [9], and PCR ribotype 027 continues to spread in eastern Europe [10-12] and globally [13]. In 2010, ECDC launched a new project, the European C. difficile Infection Surveillance Network (ECDIS-Net), to enhance surveillance of CDI and laboratory capacity to test for CDI in Europe. The goal of ECDIS- Net was to establish a standardised CDI surveillance protocol suitable for application all over Europe in order to: (i) estimate the incidence rate and total infection rate of CDI (including recurrent CDI cases) in European acute care hospitals; (ii) provide participating hospitals with a standardised tool to measure and compare their own incidence rates with those observed in other participating hospitals; (iii) assess adverse outcomes of CDI such as complications and death; and (iv) describe the epidemiology of CDI concerning antibiotic susceptibility, PCR ribotypes, presence of tcdA, tcdB and binary toxins and detect new emerging types at local, national and European level. The primary objectives of the present study were to: (i) test the pilot protocol for the surveillance of CDI in European acute care hospitals developed by ECDIS-Net (methodology, variables and indicators); (ii) assess the feasibility and workload of collecting the required hospital data, case- based epidemiological and microbiological data; and (iii) evaluate the quality of data collected, whether in the presence or absence of existing national CDI surveillance activities. A secondary aim was to assess the relationship between patient and microbiological characteristics and in-hospital outcome of CDI to confirm the added value of collecting detailed epidemiological and microbiological data on CDI at European level

    Standardised surveillance of Clostridium Difficile Infection in European acute care hospitals: A pilot study, 2013

    Get PDF
    Clostridium difficile infection (CDI) remains poorly controlled in many European countries, of which several have not yet implemented national CDI surveillance. In 2013, experts from the European CDI Surveillance Network project and from the European Centre for Disease Prevention and Control developed a protocol with three options of CDI surveillance for acute care hospitals: a ‘minimal’ option (aggregated hospital data), a ‘light’ option (including patient data for CDI cases) and an ‘enhanced’ option (including microbiological data on the first 10 CDI episodes per hospital). A total of 37 hospitals in 14 European countries tested these options for a three-month period (between 13 May and 1 November 2013). All 37 hospitals successfully completed the minimal surveillance option (for 1,152 patients). Clinical data were submitted for 94% (1,078/1,152) of the patients in the light option; information on CDI origin and outcome was complete for 94% (1,016/1,078) and 98% (294/300) of the patients in the light and enhanced options, respectively. The workload of the options was 1.1, 2.0 and 3.0 person-days per 10,000 hospital discharges, respectively. Enhanced surveillance was tested and was successful in 32 of the hospitals, showing that C. difficile PCR ribotype 027 was predominant (30% (79/267)). This study showed that standardised multicountry surveillance, with the option of integrating clinical and molecular data, is a feasible strategy for monitoring CDI in Europe

    Clostridium difficile 027 infection in Central Italy

    Get PDF
    Background Clostridium difficile (CD) has increasingly become recognised as a significant international health burden, often associated with the healthcare environment. The upsurge in incidence of CD coincided with the emergence of a hypervirulent strain of CD characterized as 027. In 2010, 8 cases of CD 027 infections were identified in Italy. Since then, no further reports have been published. We describe 10 new cases of CD 027 infection occurring in Italy. Methods Since December 2010, stool samples of patients with severe diarrhea and clinical suspicion of the presence of a hypervirulent strain, were tested for CD 027 by the Xpert C. difficile PCR assay (Cepheid, Sunnyvale, CA). Clinical, epidemiological and laboratory data were collected. Results From December 2010 to April 2012, 24 faecal samples from 19 patients who fit the above criteria were submitted to our laboratory. Samples were collected from 7 different hospitals. Of these, 17 had a positive PCR for CD and 10 were the epidemic 027 strain (59%). All PCR positive samples had a positive EIA toxin A/B test. Nine of 10 patients were recently exposed to antimicrobials and were healthcare-associated, including 4 with a history of long term care facility (LTCF) admission; the remaining case was community-associated, namely the wife of a patient with hospital-acquired CD 027 infection. Five patients experienced at least one recurrence of CD associated diarrhea (CDAD) with a total of 12 relapsing episodes. Of these, two patients had 5 and 6 relapses respectively. We compared the 10 patients with 027 CDAD versus the 7 patients with non-027 CDAD. None of the 7 patients with non-027 CDAD had a recent history of LTCF admission and no subsequent relapses were observed (p = 0.04). Conclusions Our study shows that CD 027 is emerging in healthcare facilities in Italy. Whilst nosocomial acquisition accounted for the majority of such cases, 4 patients had history of a recent stay in a LTCF. We highlight the substantial risks of this highly transmissible organism in such environments. Moreover, 50% of our patients with CDAD from the 027 strain had high relapse rates which may serve to further establish this strain within the Italian health and social care systems

    Variability in testing policies and impact on reported Clostridium difficile infection rates: results from the pilot Longitudinal European Clostridium difficile Infection Diagnosis surveillance study (LuCID)

    Get PDF
    Lack of standardised Clostridium difficile testing is a potential confounder when comparing infection rates. We used an observational, systematic, prospective large-scale sampling approach to investigate variability in C. difficile sampling to understand C. difficile infection (CDI) incidence rates. In-patient and institutional data were gathered from 60 European hospitals (across three countries). Testing methodology, testing/CDI rates and case profiles were compared between countries and institution types. The mean annual CDI rate per hospital was lowest in the UK and highest in Italy (1.5 vs. 4.7 cases/10,000 patient bed days [pbds], p < 0.001). The testing rate was highest in the UK compared with Italy and France (50.7/10,000 pbds vs. 31.5 and 30.3, respectively, p < 0.001). Only 58.4 % of diarrhoeal samples were tested for CDI across all countries. Overall, only 64 % of hospitals used recommended testing algorithms for laboratory testing. Small hospitals were significantly more likely to use standalone toxin tests (SATTs). There was an inverse correlation between hospital size and CDI testing rate. Hospitals using SATT or assays not detecting toxin reported significantly higher CDI rates than those using recommended methods, despite testing similar testing frequencies. These data are consistent with higher false-positive rates in such (non-recommended) testing scenarios. Cases in Italy and those diagnosed by SATT or methods NOT detecting toxin were significantly older. Testing occurred significantly earlier in the UK. Assessment of testing practice is paramount to the accurate interpretation and comparison of CDI rates

    Clostridium difficile infection among hospitalized HIV-infected individuals: epidemiology and risk factors: results from a case-control study (2002-2013).

    Get PDF
    BACKGROUND: HIV infection is a risk factor for Clostridium difficile infection (CDI) yet the immune deficiency predisposing to CDI is not well understood, despite an increasing incidence of CDI among such individuals. We aimed to estimate the incidence and to evaluate the risk factors of CDI among an HIV cohort in Italy. METHODS: We conducted a retrospective case-control (1:2) study. Clinical records of HIV inpatients admitted to the National Institute for Infectious Disease "L. Spallanzani", Rome, were reviewed (2002-2013). CASES: HIV inpatients with HO-HCFA CDI, and controls: HIV inpatients without CDI, were matched by gender and age. Logistic regression was used to identify risk factors associated with CDI. RESULTS: We found 79 CDI episodes (5.1 per 1000 HIV hospital admissions, 3.4 per 10000 HIV patient-days). The mean age of cases was 46 years. At univariate analysis factors associated with CDI included: antimycobacterial drug exposure, treatment for Pneumocystis pneumonia, acid suppressant exposure, previous hospitalization, antibiotic exposure, low CD4 cell count, high Charlson score, low creatinine, low albumin and low gammaglobulin level. Using multivariate analysis, lower gammaglobulin level and low serum albumin at admission were independently associated with CDI among HIV-infected patients. CONCLUSIONS: Low gammaglobulin and low albumin levels at admission are associated with an increased risk of developing CDI. A deficiency in humoral immunity appears to play a major role in the development of CDI. The potential protective role of albumin warrants further investigation

    Volatile Sulfur Compounds in Foods as a Result of Ionizing Radiation

    Get PDF
    Ionizing radiation improves food safety and extends shelf life by inactivating food-borne pathogens and spoilage microorganisms. However, irradiation may induce the development of an off-odor, particularly at high doses. The off-odor has been called “irradiation odor”. Substantial evidence suggests that volatile sulfur compounds (VSCs) play an important role in the development of the off-odor. These compounds include hydrogen sulfide, methanethiol, methyl sulfide, dimethyl disulfide and dimethyl trisulfide among others. The formation of off-odor and VSCs due to irradiation in meat, and fruit juices is presented. It is known that irradiation exerts its effect through radiolysis of water in foods where water is a dominant component. Irradiation of water produces three primary free radicals: hydroxyl, hydrogen atoms, and hydrated electrons. Use of specific scavengers in a model system revealed that hydroxyl radicals are involved in the formation of VSCs. Possible mechanisms for formation of VSC are also discussed. Also discussed are possible remedies for formation of VSCs and off-odor, such as use of antioxidants and double packaging

    Comparative genomic analysis of toxin-negative strains of Clostridium difficile from humans and animals with symptoms of gastrointestinal disease

    Get PDF
    Background: Clostridium difficile infections (CDI) are a significant health problem to humans and food animals. Clostridial toxins ToxA and ToxB encoded by genes tcdA and tcdB are located on a pathogenicity locus known as the PaLoc and are the major virulence factors of C. difficile. While toxin-negative strains of C. difficile are often isolated from faeces of animals and patients suffering from CDI, they are not considered to play a role in disease. Toxin-negative strains of C. difficile have been used successfully to treat recurring CDI but their propensity to acquire the PaLoc via lateral gene transfer and express clinically relevant levels of toxins has reinforced the need to characterise them genetically. In addition, further studies that examine the pathogenic potential of toxin-negative strains of C. difficile and the frequency by which toxin-negative strains may acquire the PaLoc are needed. Results: We undertook a comparative genomic analysis of five Australian toxin-negative isolates of C. difficile that lack tcdA, tcdB and both binary toxin genes cdtA and cdtB that were recovered from humans and farm animals with symptoms of gastrointestinal disease. Our analyses show that the five C. difficile isolates cluster closely with virulent toxigenic strains of C. difficile belonging to the same sequence type (ST) and have virulence gene profiles akin to those in toxigenic strains. Furthermore, phage acquisition appears to have played a key role in the evolution of C. difficile. Conclusions: Our results are consistent with the C. difficile global population structure comprising six clades each containing both toxin-positive and toxin-negative strains. Our data also suggests that toxin-negative strains of C. difficile encode a repertoire of putative virulence factors that are similar to those found in toxigenic strains of C. difficile, raising the possibility that acquisition of PaLoc by toxin-negative strains poses a threat to human health. Studies in appropriate animal models are needed to examine the pathogenic potential of toxin-negative strains of C. difficile and to determine the frequency by which toxin-negative strains may acquire the PaLoc
    corecore