2,616 research outputs found

    Antigenic variation in vector-borne pathogens.

    Get PDF
    Several pathogens of humans and domestic animals depend on hematophagous arthropods to transmit them from one vertebrate reservoir host to another and maintain them in an environment. These pathogens use antigenic variation to prolong their circulation in the blood and thus increase the likelihood of transmission. By convergent evolution, bacterial and protozoal vector-borne pathogens have acquired similar genetic mechanisms for successful antigenic variation. Borrelia spp. and Anaplasma marginale (among bacteria) and African trypanosomes, Plasmodium falciparum, and Babesia bovis (among parasites) are examples of pathogens using these mechanisms. Antigenic variation poses a challenge in the development of vaccines against vector-borne pathogens

    The geometry of the Barbour-Bertotti theories I. The reduction process

    Get PDF
    The dynamics of N≄3N\geq 3 interacting particles is investigated in the non-relativistic context of the Barbour-Bertotti theories. The reduction process on this constrained system yields a Lagrangian in the form of a Riemannian line element. The involved metric, degenerate in the flat configuration space, is the first fundamental form of the space of orbits of translations and rotations (the Leibniz group). The Riemann tensor and the scalar curvature are computed by a generalized Gauss formula in terms of the vorticity tensors of generators of the rotations. The curvature scalar is further given in terms of the principal moments of inertia of the system. Line configurations are singular for N≠3N\neq 3. A comparison with similar methods in molecular dynamics is traced.Comment: 15 pages, to appear in Classical and Quantum Gravit

    Shades of Grey: Ethical Dilemmas

    Get PDF
    No abstract available

    Foundations of Relational Particle Dynamics

    Full text link
    Relational particle dynamics include the dynamics of pure shape and cases in which absolute scale or absolute rotation are additionally meaningful. These are interesting as regards the absolute versus relative motion debate as well as discussion of conceptual issues connected with the problem of time in quantum gravity. In spatial dimension 1 and 2 the relative configuration spaces of shapes are n-spheres and complex projective spaces, from which knowledge I construct natural mechanics on these spaces. I also show that these coincide with Barbour's indirectly-constructed relational dynamics by performing a full reduction on the latter. Then the identification of the configuration spaces as n-spheres and complex projective spaces, for which spaces much mathematics is available, significantly advances the understanding of Barbour's relational theory in spatial dimensions 1 and 2. I also provide the parallel study of a new theory for which positon and scale are purely relative but orientation is absolute. The configuration space for this is an n-sphere regardless of the spatial dimension, which renders this theory a more tractable arena for investigation of implications of scale invariance than Barbour's theory itself.Comment: Minor typos corrected; references update

    Triangleland. I. Classical dynamics with exchange of relative angular momentum

    Full text link
    In Euclidean relational particle mechanics, only relative times, relative angles and relative separations are meaningful. Barbour--Bertotti (1982) theory is of this form and can be viewed as a recovery of (a portion of) Newtonian mechanics from relational premises. This is of interest in the absolute versus relative motion debate and also shares a number of features with the geometrodynamical formulation of general relativity, making it suitable for some modelling of the problem of time in quantum gravity. I also study similarity relational particle mechanics (`dynamics of pure shape'), in which only relative times, relative angles and {\sl ratios of} relative separations are meaningful. This I consider firstly as it is simpler, particularly in 1 and 2 d, for which the configuration space geometry turns out to be well-known, e.g. S^2 for the `triangleland' (3-particle) case that I consider in detail. Secondly, the similarity model occurs as a sub-model within the Euclidean model: that admits a shape--scale split. For harmonic oscillator like potentials, similarity triangleland model turns out to have the same mathematics as a family of rigid rotor problems, while the Euclidean case turns out to have parallels with the Kepler--Coulomb problem in spherical and parabolic coordinates. Previous work on relational mechanics covered cases where the constituent subsystems do not exchange relative angular momentum, which is a simplifying (but in some ways undesirable) feature paralleling centrality in ordinary mechanics. In this paper I lift this restriction. In each case I reduce the relational problem to a standard one, thus obtain various exact, asymptotic and numerical solutions, and then recast these into the original mechanical variables for physical interpretation.Comment: Journal Reference added, minor updates to References and Figure

    Do consumers ‘Get the facts’? A survey of alcohol warning label recognition in Australia

    Full text link
    BACKGROUND: There is limited research on awareness of alcohol warning labels and their effects. The current study examined the awareness of the Australian voluntary warning labels, the ‘Get the facts’ logo (a component of current warning labels) that directs consumers to an industry-designed informational website, and whether alcohol consumers visited this website. METHODS: Participants aged 18–45 (unweighted n = 561; mean age = 33.6 years) completed an online survey assessing alcohol consumption patterns, awareness of the ‘Get the facts’ logo and warning labels, and use of the website. RESULTS: No participants recalled the ‘Get the facts’ logo, and the recall rate of warning labels was 16 % at best. A quarter of participants recognised the ‘Get the facts’ logo, and awareness of the warning labels ranged from 13.1–37.9 %. Overall, only 7.3 % of respondents had visited the website. Multivariable logistic regression models indicated that younger drinkers, increased frequency of binge drinking, consuming alcohol directly from the bottle or can, and support for warning labels were significantly, positively associated with awareness of the logo and warning labels. While an increased frequency of binge drinking, consuming alcohol directly from the container, support for warning labels, and recognition of the ‘Get the facts’ logo increased the odds of visiting the website. CONCLUSIONS: Within this sample, recall of the current, voluntary warning labels on Australian alcohol products was non-existent, overall awareness was low, and few people reported visiting the DrinkWise website. It appears that current warning labels fail to effectively transmit health messages to the general public

    Cosmology as Relativistic Particle Mechanics: From Big Crunch to Big Bang

    Full text link
    Cosmology can be viewed as geodesic motion in an appropriate metric on an `augmented' target space; here we obtain these geodesics from an effective relativistic particle action. As an application, we find some exact (flat and curved) cosmologies for models with N scalar fields taking values in a hyperbolic target space for which the augmented target space is a Milne universe. The singularities of these cosmologies correspond to points at which the particle trajectory crosses the Milne horizon, suggesting a novel resolution of them, which we explore via the Wheeler-deWitt equation.Comment: 17 pages, 3 figures, references and comments adde

    Dense Quarks, and the Fermion Sign Problem, in a SU(N) Matrix Model

    Full text link
    We study the effect of dense quarks in a SU(N) matrix model of deconfinement. For three or more colors, the quark contribution to the loop potential is complex. After adding the charge conjugate loop, the measure of the matrix integral is real, but not positive definite. In a matrix model, quarks act like a background Z(N) field; at nonzero density, the background field also has an imaginary part, proportional to the imaginary part of the loop. Consequently, while the expectation values of the loop and its complex conjugate are both real, they are not equal. These results suggest a possible approach to the fermion sign problem in lattice QCD.Comment: 9 pages, 3 figure

    DNA characterization of Lyme disease spirochetes.

    Get PDF
    Lyme disease spirochetes (LDS) have phenotypic characteristics of both treponemes and borreliae. To ascertain whether one or more species of LDS exist, as well as their taxonomic status, we determined the DNA base (G + C) content for three strains of LDS, the DNA relatedness of ten strains isolated in the United States or Europe, and the DNA relatedness of LDS to other spirochetes. The G + C content of the three LDS strains was 28.1-29.0 mol%, most similar to those of Borellia hermsii (30.6 mol %) and Treponema hyodysenteriae (25.6 mol %) among the other spirochetes tested. DNA hybridization studies of nine LDS strains to a reference strain isolated from human blood revealed divergence (unpaired bases) within related nucleotide sequences of only 0.0-1.0 percent, indicating the strains were one species. Similarly, relatedness values of seven strains to the reference strain were high: 58-98 percent (mean, 71 percent) in 50 degrees C reactions and 50-93 percent (mean, 69 percent) in 65 degrees C reactions. Labeled DNA from B. hermsii was 30-40 percent related to three Lyme disease spirochete strains in 50 degrees C reactions and 8-10 percent related in 65 degrees C reactions. In contrast, DNA from the reference LDS strain showed relatedness of only 1 percent to DNAs of two leptospires and only 16 percent to DNA from T. hyodysenteriae. We conclude that LDS are a single species, genetically unlike treponemes or leptospires, which belong in the genus Borrelia
    • 

    corecore