13 research outputs found

    Solar + Storage Synergies for Managing Commercial-Customer Demand Charges

    No full text
    Demand charges, which are based on a customer’s maximum demand in kilowatts (kW), are a common element of electricity rate structures for commercial customers. Customer-sited solar photovoltaic (PV) systems can potentially reduce demand charges, but the level of savings is difficult to predict, given variations in demand charge designs, customer loads, and PV generation profiles. Lawrence Berkeley National Laboratory (Berkeley Lab) and the National Renewable Energy Laboratory (NREL) are collaborating on a series of studies to understand how solar PV can impact demand charges. Prior studies in the series examined demand charge reductions from solar on a stand-alone basis for residential and commercial customers. Those earlier analyses found that solar, alone, has limited ability to reduce demand charges depending on the specific design of the demand charge and on the shape of the customer’s load profile. This latest analysis estimates demand charge savings from solar in commercial buildings when co-deployed with behind-the-meter storage, highlighting the complementary roles of the two technologies. The analysis is based on simulated loads, solar generation, and storage dispatch across a wide variety of building types, locations, system configurations, and demand charge designs

    Estimating the Value of Improved Distributed Photovoltaic Adoption Forecasts for Utility Resource Planning

    No full text
    Misforecasting the adoption of customer-owned distributed photovoltaics (DPV) can have operational and financial implications for utilities; forecasting capabilities can be improved, but generally at a cost. This paper informs this decision-space by using a suite of models to explore the capacity expansion and operation of the Western Interconnection over a 15-year period across a wide range of DPV growth rates and misforecast severities. The system costs under a misforecast are compared against the costs under a perfect forecast, to quantify the costs of misforecasting. Using a simplified probabilistic method applied to these modeling results, an analyst can make a first-order estimate of the financial benefit of improving a utility’s forecasting capabilities, and thus be better informed about whether to make such an investment. For example, under our base assumptions, a utility with 10 TWh per year of retail electric sales who initially estimates that DPV growth could range from 2% to 7.5% of total generation over the next 15 years could expect total present-value savings of approximately $4 million if they could reduce the severity of misforecasting to within ±25%. Utility resource planners can compare those savings against the costs needed to achieve that level of precision, to guide their decision on whether to make an investment in tools or resources
    corecore