26 research outputs found

    Eicosapentaenoic acid metabolism by cytochrome P450 enzymes of the CYP2C subfamily

    No full text
    CYP2C enzymes epoxidize arachidonic acid (AA) to metabolites involved in the regulation of vascular and renal function. We tested the hypothesis that eicosapentaenoic acid (EPA), a n-3 polyunsaturated fatty acid, may serve as an alternative substrate. Human CYP2C8 and CYP2C9, as well as rat CYP2C11 and CYP2C23, were co-expressed with NADPH-CYP reductase in a baculovirus/insect cell system. The recombinant enzymes showed high EPA and AA epoxygenase activities and the catalytic efficiencies were almost equal comparing the two substrates. The 17,18-double bond was the preferred site of EPA epoxidation by CYPs 2C8, 2C11, and 2C23. 17(R),18(S)-Epoxyeicosatetraenoic acid was produced with an optical purity of about 70% by CYPs 2C9, 2C11, and 2C23 whereas CYP2C8 showed the opposite enantioselectivity. These results demonstrate that EPA is an efficient substrate of CYP2C enzymes and suggest that n-3 PUFA-rich diets may shift the CYP2C-dependent generation of physiologically active eicosanoids from AA- to EPA-derived metabolites

    Genetic variability of CYP2B6 in populations of African and Asian origin: allele frequencies, novel functional variants, and possible implications for anti-HIV therapy with efavirenz

    No full text
    The present study investigated CYP2B6 genetic variability by sequencing genomic DNA samples of African-American, Ghanaian, Taiwanese, Japanese and Korean subjects throughout all exons and exon-intron boundaries. The most common nonsynonymous single nucleotide polymorphisms (SNPs) were 15631G > T (Q172H) and 18053A > G (K262R, together defining allele 2B6*6), both of which had frequencies close to 50% in Ghanaians and 30% in African-Americans. These SNPs have recently been shown to affect efavirenz pharmacokinetics and response in HIV patients. Eight new missense mutations (76A > T [T26S], 83A > G [D28G], 85C > A, 86G > C [both R29T], 15618C > T [T168I], 18038G > A [D257N], 21034C > T [R336C], 21498C > A [P428T]), three new silent mutations and two new intronic SNPs defining six novel alleles (*17A and B, *18, *19, *20, *21) were identified. Heterologous expression in COS-1 cells revealed pronounced reduction in expression and/or bupropion hydroxylase activity for variants T168I, D257N, R336C and P428T, whereas the triple mutant 2B6.17 (T26S, D28G, R29T) appeared to be functionally normal. These data extend the CYP2B6 knowledge base and should be particularly relevant for anti-HIV-therapy with efavirenz

    Cytochrome P450-dependent eicosapentaenoic acid metabolites are novel BK channel activators

    No full text
    P450-dependent arachidonic acid (AA) metabolites regulate arterial tone by modulating calcium-activated (BK) potassium channels in vascular smooth muscle cells (VSMC), Because eicosapentaenoic acid (EPA) has been reported to improve vascular function, we tested the hypothesis that P450-dependent epoxygenation of EPA produces alternative vasoactive compounds. We synthesized the 5 regioisomeric epoxyeicosattrienoic acids (EETeTr) and examined them for effects on K+ currents in rat cerebral artery VSMCs with the patch-clamp technique. 11(R),12(S)-epoxyeicosatrienoic acid (50 nmol/L) was used for comparison and stimulated K+ currents 6-fold at +60 mV. However, 17(R),18(S)-EETeTr elicited a more than 14-fold increase, 17(S),18(R)-EET and the remaining four regioisomers were inactive. The effect of 17(R),18(S)-EETeTr was blocked by tetraethylammonium but not by 4-aminopyridine. VSMCs expressed P450s 4A1 and 4A3. Recombinant P450 4A1 hydroxylated EPA at C-19 and C-20 and epoxygenated the 17,18-double bond, yielding the R, S- and S, R-enantiomers in a ratio of 64:36. We conclude that 17(R),18(S)-EETeTr represents a novel, potent activator of BK potassium channels. Furthermore, this metabolite can be directly produced in VSMCs. We suggest that 17(R),18(S)-EETeTr may function as an important hyperpolarizing factor, particularly with EPA-rich diets

    Mouse Cyp4a isoforms: enzymatic properties, gender- and strain-specific expression, and role in renal 20-hydroxyeicosatetraenoic acid formation

    No full text
    Arachidonic acid (AA) hydroxylation to 20-hydroxyeicosatetraenoic acid (20-HETE) influences renal vascular and tubular function. To identify the cytochrome P450 (CYP) isoforms catalyzing this reaction in the mouse kidney, we analyzed the substrate specificity of Cyp4a10, 4a12a, 4a12b, and 4a14 and determined sex and strain-specific expressions. All recombinant enzymes showed high lauric acid hydroxylase activities. Cyp4a12a and Cyp4a12b efficiently hydroxylated AA to 20-HETE with V max values of about 10 nmol/nmol/min and K m values of 20 to 40 microM. 20-Carboxyeicosatetraenoic acid occurred as a secondary metabolite. AA hydroxylase activities were about 25-75-fold lower with Cyp4a10 and not detectable with Cyp4a14. Cyp4a12a and Cyp4a12b efficiently converted also eicosapentaenoic acid (EPA) to 19/20-OH- and 17,18-epoxy-EPA. In male mice, renal microsomal AA hydroxylase activities ranged between about 100 (NMRI), 45-55 (FVB/N, 129 Sv/J, BALB/c), and 25 pmol/min/mg (C57BL/6). The activities correlated with differences in Cyp4a12a protein and mRNA levels. Treatment with 5alpha-dihydrotestosterone induced both 20-HETE production and Cyp4a12a expression more than 4-fold in male C57BL/6. All female mice showed low AA hydroxylase activities (15 to 25 pmol/min/mg) and very low Cyp4a12a mRNA and protein levels, but high Cyp4a10 and Cyp4a14 expression. Renal Cyp4a12b mRNA expression was almost undetectable in both sexes of all strains. Thus, Cyp4a12a is the predominant 20-HETE synthase in the mouse kidney. Cyp4a12a expression determines the sex and strain-specific differences in 20-HETE generation and may explain sex and strain differences in the susceptibility to hypertension and target organ damage

    Hypoxia-induced pulmonary hypertension: comparison of soluble epoxide hydrolase deletion vs. inhibition

    No full text
    AIMS: The C-terminal domain of the soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs) to their less active diols, while the N-terminal domain demonstrates lipid phosphatase activity. As EETs are potent vasoconstrictors in the pulmonary circulation, we assessed the development of pulmonary hypertension induced by exposure to hypoxia (10% O(2)) for 21 days in wild-type (WT) and sEH(-/-) mice and compared the effects with chronic (4 months) sEH inhibition. METHODS AND RESULTS: In isolated lungs from WT mice, acute hypoxic vasoconstriction (HPV) was potentiated by sEH inhibition and attenuated by an EET antagonist. After prolonged hypoxia, the acute HPV and sensitivity to the EET antagonist were increased, but potentiation of vasoconstriction following sEH inhibition was not evident. Chronic hypoxia also stimulated the muscularization of pulmonary arteries and decreased sEH expression in WT mice. In normoxic sEH(-/-) mice, acute HPV and small artery muscularization were greater than that in WT lungs and enhanced muscularization was accompanied with decreased voluntary exercise capacity. Acute HPV in sEH(-/-) mice was insensitive to sEH inhibition but inhibited by the EET antagonist and chronic hypoxia induced an exaggerated pulmonary vascular remodelling. In WT mice, chronic sEH inhibition increased serum EET levels but failed to affect acute HPV, right ventricle weight, pulmonary artery muscularization, or voluntary running distance. In human donor lungs, the sEH was expressed in the wall of pulmonary arteries, however, sEH expression was absent in samples from patients with pulmonary hypertension. CONCLUSION: These data suggest that a decrease in sEH expression is intimately linked to pathophysiology of hypoxia-induced pulmonary remodelling and hypertension. However, as sEH inhibitors do not promote the development of pulmonary hypertension it seems likely that the N-terminal lipid phosphatase may play a role in the development of this disease

    Hypoxia-induced pulmonary hypertension: comparison of soluble epoxide hydrolase deletion vs. inhibition

    No full text
    AIMS: The C-terminal domain of the soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs) to their less active diols, while the N-terminal domain demonstrates lipid phosphatase activity. As EETs are potent vasoconstrictors in the pulmonary circulation, we assessed the development of pulmonary hypertension induced by exposure to hypoxia (10% O(2)) for 21 days in wild-type (WT) and sEH(-/-) mice and compared the effects with chronic (4 months) sEH inhibition. METHODS AND RESULTS: In isolated lungs from WT mice, acute hypoxic vasoconstriction (HPV) was potentiated by sEH inhibition and attenuated by an EET antagonist. After prolonged hypoxia, the acute HPV and sensitivity to the EET antagonist were increased, but potentiation of vasoconstriction following sEH inhibition was not evident. Chronic hypoxia also stimulated the muscularization of pulmonary arteries and decreased sEH expression in WT mice. In normoxic sEH(-/-) mice, acute HPV and small artery muscularization were greater than that in WT lungs and enhanced muscularization was accompanied with decreased voluntary exercise capacity. Acute HPV in sEH(-/-) mice was insensitive to sEH inhibition but inhibited by the EET antagonist and chronic hypoxia induced an exaggerated pulmonary vascular remodelling. In WT mice, chronic sEH inhibition increased serum EET levels but failed to affect acute HPV, right ventricle weight, pulmonary artery muscularization, or voluntary running distance. In human donor lungs, the sEH was expressed in the wall of pulmonary arteries, however, sEH expression was absent in samples from patients with pulmonary hypertension. CONCLUSION: These data suggest that a decrease in sEH expression is intimately linked to pathophysiology of hypoxia-induced pulmonary remodelling and hypertension. However, as sEH inhibitors do not promote the development of pulmonary hypertension it seems likely that the N-terminal lipid phosphatase may play a role in the development of this disease

    A peroxisome proliferator-activated receptor-alpha activator induces renal CYP2C23 activity and protects from angiotensin II-induced renal injury

    No full text
    Cytochrome P450 (CYP)-dependent arachidonic acid (AA) metabolites are involved in the regulation of renal vascular tone and salt excretion. The epoxygenation product 11,12-epoxyeicosatrienoic acid (EET) is anti-inflammatory and inhibits nuclear factor-κB activation. We tested the hypothesis that the peroxisome proliferator-activated receptor-α-activator fenofibrate (Feno) induces CYP isoforms, AA hydroxylation, and epoxygenation activity, and protects against inflammatory organ damage. Double-transgenic rats (dTGRs) overexpressing human renin and angiotensinogen genes were treated with Feno. Feno normalized blood pressure, albuminuria, reduced nuclear factor-κB activity, and renal leukocyte infiltration. Renal epoxygenase activity was lower in dTGRs compared to nontransgenic rats. Feno strongly induced renal CYP2C23 protein and AA-epoxygenase activity under pathological and nonpathological conditions. In both cases, CYP2C23 was the major isoform responsible for 11,12-EET formation. Moreover, we describe a novel CYP2C23-dependent pathway leading to hydroxy-EETs (HEETs), which may serve as endogenous peroxisome proliferator-activated receptor-α activators. The capacity to produce HEETs via CYP2C23-dependent epoxygenation of 20-HETE and CYP4A-dependent hydroxylation of EETs was reduced in dTGR kidneys and induced by Feno. These results demonstrate that Feno protects against angiotensin II-induced renal damage and acts as inducer of CYP2C23-mediated epoxygenase activities. We propose that CYP-dependent EET/HEET production may serve as an anti-inflammatory control mechanism
    corecore