145 research outputs found

    Entangled-Photon Generation from Parametric Down-Conversion in Media with Inhomogeneous Nonlinearity

    Full text link
    We develop and experimentally verify a theory of Type-II spontaneous parametric down-conversion (SPDC) in media with inhomogeneous distributions of second-order nonlinearity. As a special case, we explore interference effects from SPDC generated in a cascade of two bulk crystals separated by an air gap. The polarization quantum-interference pattern is found to vary strongly with the spacing between the two crystals. This is found to be a cooperative effect due to two mechanisms: the chromatic dispersion of the medium separating the crystals and spatiotemporal effects which arise from the inclusion of transverse wave vectors. These effects provide two concomitant avenues for controlling the quantum state generated in SPDC. We expect these results to be of interest for the development of quantum technologies and the generation of SPDC in periodically varying nonlinear materials.Comment: submitted to Physical Review
    corecore