13 research outputs found
The effect of different interfaces during virtual game practice on motor performance of individuals with genetic ataxia: A cross-sectional study
Purpose: Reaching and coordination tasks are widely used in traditional physical rehabilitation programs for individuals with Ataxia. Virtual reality interventions could optimize the motor performance of these individuals; however, the type of virtual interface may influence performance during virtual practice. We aimed to estimate the extent of the effect of different interfaces (webcam and touchscreen) on the motor performance of individuals with various types of genetic ataxia, compared to a control group, during virtual computer game tasks. Methods: Repeated exposure quasi-experimental design, which included seventeen volunteers diagnosed with progressive ataxia between 21 and 64 years of age and sixteen age-matched controls. The virtual game tasks were based on the MoveHero software, performed using different interfaces (webcam or touchscreen). Subgroups of participants with genetic ataxia performed the virtual games using the interfaces in different orders (webcam interface followed by touchscreen interface, or vice-versa). The absolute error (AE), variable error (VE), number of hits, and anticipation were used to reflect the motor performance during the virtual task. Results: Participants with ataxia presented more variable and absolute errors, a lower number of hits, and greater anticipation error than controls (p<0.05). For participants with ataxia, a greater AE was found only in the sequence touchscreen followed by webcam interface (i.e., the sequence webcam before touchscreen presented lower AE). Conclusion: The group of participants with genetic ataxia presented lower performance than the control group regardless of the interface (webcam or touchscreen). The most interesting observation was that although practicing with the webcam interface offers features that make the task more complex than the touchscreen interface, resulting in lower performance, this interface facilitated performance in a subsequent touchscreen task only in individuals with ataxia, suggesting that a virtual interface engenders greater transfer to other tasks. Registered at Registro Brasileiro de Ensaios ClĂnicos (ReBEC) database number identifier: RBR-3q685r5
Alterações ventilatĂłrias durante o uso de trocadores de calor e umidade em pacientes submetidos Ă ventilação mecânica com pressĂŁo de suporte e ajustes nos parâmetros ventilatĂłrios para compensar estas possĂveis alterações: estudo de intervenção autocontrolado em humanos
RESUMO Objetivo: Avaliar as possĂveis alterações do volume corrente, volume-minuto e frequĂŞncia respiratĂłria causadas pela utilização de trocadores de calor e umidade em pacientes submetidos Ă ventilação mecânica na modalidade pressĂŁo de suporte, e quantificar a variação da pressĂŁo de suporte necessária para compensar o efeito causado pelo trocador de calor e umidade. MĂ©todos: Os pacientes sob ventilação mecânica invasiva na modalidade pressĂŁo de suporte foram avaliados utilizando umidificadores aquecidos e trocadores de calor e umidade. Caso o volume encontrado com uso de trocadores de calor e umidade fosse menor que o achado com o umidificador aquecido, iniciava-se o aumento da pressĂŁo de suporte, perante o uso de trocadores de calor e umidade, atĂ© ser encontrado um valor de pressĂŁo de suporte que possibilitasse ao paciente gerar um valor prĂłximo do volume corrente inicial com umidificador aquecido. A análise foi realizada por meio do teste t pareado, e os valores de incremento foram expressos em porcentagem de aumento necessário. Resultados: Foram avaliados 26 pacientes. O uso de trocadores de calor e umidade aumentou a frequĂŞncia respiratĂłria, e reduziu o volume corrente e o volume-minuto, quando comparados com o uso do umidificador aquecido. Com o uso de trocadores de calor e umidade, os pacientes precisaram de um incremento de 38,13% na pressĂŁo de suporte para manter os volumes prĂ©vios. ConclusĂŁo: O trocador de calor e umidade alterou os parâmetros de volume corrente, volume-minuto e frequĂŞncia respiratĂłria, sendo necessário um aumento da pressĂŁo de suporte para compensar estas alterações
Monitoring.
<p>A) Optoelectronic plethysmography (OEP): retro-reflective markers separating both the upper rib cage (RCp) and abdomen (AB) compartments. B) Respiratory Inductive plethysmography (RIP): elastic bands positioned on RCp and AB compartments. C) RCp and AB movement during respiratory cicles.</p
Thoracoabdominal asynchrony: Two methods in healthy, COPD, and interstitial lung disease patients
<div><p>Background</p><p>Thoracoabdominal asynchrony is the nonparallel motion of the ribcage and abdomen. It is estimated by using respiratory inductive plethysmography and, recently, using optoelectronic plethysmography; however the agreement of measurements between these 2 techniques is unknown. Therefore, the present study compared respiratory inductive plethysmography with optoelectronic plethysmography for measuring thoracoabdominal asynchrony to see if the measurements were similar or different.</p><p>Methods</p><p>27 individuals (9 healthy subjects, 9 patients with interstitial lung disease, and 9 with chronic obstructive pulmonary disease performed 2 cycle ergometer tests with respiratory inductive plethysmography or optoelectronic plethysmography in a random order. Thoracoabdominal asynchrony was evaluated at rest, and at 50% and 75% of maximal workload between the superior ribcage and abdomen using a phase angle.</p><p>Results</p><p>Thoracoabdominal asynchrony values were very similar in both approaches not only at rest but also with exercise, with no statistical difference. There was a good correlation between the methods and the Phase angle values were within the limits of agreement in the Bland-Altman analysis.</p><p>Conclusion</p><p>Thoracoabdominal asynchrony measured by optoelectronic plethysmography and respiratory inductive plethysmography results in similar values and has a satisfactory agreement at rest and even for different exercise intensities in these groups.</p></div
Demographic and pulmonary function characteristics of healthy, ILD, and COPD groups.
<p>Demographic and pulmonary function characteristics of healthy, ILD, and COPD groups.</p
Ventilatory variables of healthy, ILD, and COPD groups at rest, L<sub>50</sub>, and L<sub>75</sub> during OEP and RIP monitoring.
<p>Ventilatory variables of healthy, ILD, and COPD groups at rest, L<sub>50</sub>, and L<sub>75</sub> during OEP and RIP monitoring.</p
Regression polynomial model representing the PhAng with OEP and RIP.
<p>PhAng: Phase Angle, OEP: optoelectronic plethysmography, RIP: respiratory inductive plethysmography, ILD: interstitial lung disease, COPD: chronic obstructive pulmonary disease, L50 and L75: 50% and 75% of maximal load.</p
Representation of the PhAng calculation.
<p>ΔV<sub>RCp</sub>: upper RC variation; ΔV<sub>AB</sub>: AB abdomen variation, m: 50% of ΔV<sub>RCp</sub>, s: maximal excursion of ΔV<sub>AB</sub>. PhAng: Sin Ɵ = m/s.</p