69 research outputs found

    Heterogeneous nuclear ribonucleoprotein K: altered pattern of expression associated with diagnosis and prognosis of prostate cancer

    Get PDF
    Using proteomic analysis of the nuclear matrix (NM), we found that heterogeneous nuclear ribonucleoprotein K (hnRNP K), a member of the hnRNP family with pleiotropic functions, was differentially expressed in prostate cancer (PCa) tissues. This study aimed to characterise the expression of hnRNP K and its subcellular localisation in PCa, utilising immunohistochemical and quantitative western blot techniques. Furthermore, the hnRNP K expression was studied in human PCa cell lines in order to determine its modulation by bicalutamide, the anti-androgen widely used in PCa therapy. Immunohistochemical staining of paraffin-embedded tissues showed that hnRNP K was overexpressed in PCa, where it was localised both in the cytoplasm and in the nucleus. Staining of non-tumour tissues showed exclusively nuclear localisation and a less intense or absent signal. Immunoblot analysis demonstrated that the hnRNP K level within the NM was higher in PCa compared with non-tumour tissues and closely correlated with Gleason score (P=0.008). Higher expression within the NM was significantly (P=0.032) associated with poor prognosis. In two-dimensional western blot analysis hnRNP K presented several isoforms; the one with pI 5.1 was the most differently expressed between non-tumour and PCa tissues. Preliminary results indicate that hnRNP K can be modulated in vitro by a non-steroidal anti-androgen. Taken together, our findings suggest that hnRNP K has potential implications at the diagnostic, prognostic and therapeutic levels in PCa

    Targeting androgen-independent pathways: new chances for patients with prostate cancer?

    Get PDF
    Androgen deprivation therapy (ADT) is the mainstay treatment for advanced prostate cancer (PC). Most patients eventually progress to a condition known as castration-resistant prostate cancer (CRPC), characterized by lack of response to ADT. Although new androgen receptor signaling (ARS) inhibitors and chemotherapeutic agents have been introduced to overcome resistance to ADT, many patients progress because of primary or acquired resistance to these agents. This comprehensive review aims at exploring the mechanisms of resistance and progression of PC, with specific focus on alterations which lead to the activation of androgen receptor (AR)-independent pathways of survival. Our work integrates available clinical and preclinical data on agents which target these pathways, assessing their potential clinical implication in specific settings of patients. Given the rising interest of the scientific community in cancer immunotherapy strategies, further attention is dedicated to the role of immune evasion in PC

    Alterations to nuclear architecture and genome behavior in senescent cells.

    Get PDF
    The organization of the genome within interphase nuclei, and how it interacts with nuclear structures is important for the regulation of nuclear functions. Many of the studies researching the importance of genome organization and nuclear structure are performed in young, proliferating, and often transformed cells. These studies do not reveal anything about the nucleus or genome in nonproliferating cells, which may be relevant for the regulation of both proliferation and replicative senescence. Here, we provide an overview of what is known about the genome and nuclear structure in senescent cells. We review the evidence that nuclear structures, such as the nuclear lamina, nucleoli, the nuclear matrix, nuclear bodies (such as promyelocytic leukemia bodies), and nuclear morphology all become altered within growth-arrested or senescent cells. Specific alterations to the genome in senescent cells, as compared to young proliferating cells, are described, including aneuploidy, chromatin modifications, chromosome positioning, relocation of heterochromatin, and changes to telomeres

    High frequency of tumor cells with nuclear Egr-1 protein expression in human bladder cancer is associated with disease progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Egr-1 (early growth response-1 transcription factor) has been proposed to be involved in invasion and metastasis processes of human bladder cancer, but Egr-1 protein expression levels in human bladder cancer have not been investigated. In the present study we investigated the expression levels of Egr-1 protein in early stages of human bladder cancer and correlated it to later progression.</p> <p>Methods</p> <p>Expression of Egr-1 protein in human bladder cancer was examined by immunohistochemistry, on a tissue microarray constructed from tumors from 289 patients with non-muscle invasive urothelial bladder cancer.</p> <p>Results</p> <p>The frequency of tumor cells with nuclear Egr-1 immunolabelling correlated to bladder cancer stage, grade and to later progression to muscle-invasive bladder cancer (T2-4). Stage T1 tumors exhibited significantly higher frequencies of tumor cells with nuclear Egr-1 immunolabelling than Ta tumors (P = 0.001). Furthermore, Kaplan-Meier survival analysis showed that a high frequency of tumor cells with nuclear Egr-1 immunolabelling was significantly associated with a higher risk of progression to stage T2-4 (log-rank test, P = 0.035). Tumor cells with nuclear Egr-1 immunolabelling were found to localize at the tumor front in some of the tumor biopsies.</p> <p>Conclusion</p> <p>The results from this study support a potential involvement of Egr-1 in the progression from non-muscle invasive bladder cancers to muscle invasive bladder cancer.</p

    Serum Early Prostate Cancer Antigen (EPCA) Level and Its Association with Disease Progression in Prostate Cancer in a Chinese Population

    Get PDF
    BACKGROUND: Early prostate cancer antigen (EPCA) has been shown a prostate cancer (PCa)-associated nuclear matrix protein, however, its serum status and prognostic power in PCa are unknown. The goals of this study are to measure serum EPCA levels in a cohort of patients with PCa prior to the treatment, and to evaluate the clinical value of serum EPCA. METHODS: Pretreatment serum EPCA levels were determined with an ELISA in 77 patients with clinically localized PCa who underwent radical prostatectomy and 51 patients with locally advanced or metastatic disease who received primary androgen deprivation therapy, and were correlated with clinicopathological variables and disease progression. Serum EPCA levels were also examined in 40 healthy controls. RESULTS: Pretreatment mean serum EPCA levels were significantly higher in PCa patients than in controls (16.84 ± 7.60 ng/ml vs. 4.12 ± 2.05 ng/ml, P<0.001). Patients with locally advanced and metastatic PCa had significantly higher serum EPCA level than those with clinically localized PCa (22.93 ± 5.28 ng/ml and 29.41 ± 8.47 ng/ml vs. 15.17 ± 6.03 ng/ml, P = 0.014 and P<0.001, respectively). Significantly elevated EPCA level was also found in metastatic PCa compared with locally advanced disease (P < 0.001). Increased serum EPCA levels were significantly and positively correlated with Gleason score and clinical stage, but not with PSA levels and age. On multivariate analysis, pretreatment serum EPCA level held the most significantly predictive value for the biochemical recurrence and androgen-independent progression among pretreatment variables (HR = 4.860, P<0.001 and HR = 5.418, P<0.001, respectively). CONCLUSIONS: Serum EPCA level is markedly elevated in PCa. Pretreatment serum EPCA level correlates significantly with the poor prognosis, showing prediction potential for PCa progression

    Etoposide and topoisomerase II inhibition for aggressive prostate cancer: Data from a translational study

    No full text
    Background: Etoposide phosphate (VP-16) is a topoisomerase 2 (TOP2) inhibitor that demonstrated activity in patients with metastatic castration-resistant prostate cancer (mCRPC). We investigated the sensitivity of prostate cancer (PCa) cells (LNCaP, 22Rv1, PC3, DU145, PDB and MDB) to VP-16 and the possible relationship between VP-16 activity and TOP2 expression. The activity of VP-16 was compared with that of docetaxel, enzalutamide and olaparib. The prevalence and clinical significance of TOP2 genetic and transcriptomic alterations was also explored in mCRPC. Methods: Cell cultures and crystal violet cell proliferation assays were performed. Specific antibodies were used in western blots analyses of cell protein extracts. Datasets were analyzed in cBioportal. Results: VP-16 was active in all PCa cell lines analyzed and demonstrated increased activity in PC3 and DU145 cells. VP-16 was more cytotoxic compared to the other treatments, except for LNCaP and 22Rv1, which were more sensitive to docetaxel. Maintenance of antiandrogen treatment in MDB and PDB increased sensitivity to VP-16, docetaxel and enzalutamide. TOP2A was found overexpressed in 22Rv1, DU145 and PC3, whereas TOP2B was overexpressed in 22Rv1 and PDB. In the mCRPC datasets analysis, TOP2A mRNA overexpression was associated with worse patients\u2019 prognosis, with the molecular features of neuroendocrine prostate cancer (NEPC) and with lower androgen receptor (AR) score. Patients overexpressing TOP2A mRNA were more likely to harbor RB1 loss. Conclusions: Specific subpopulations of patients with aggressive variant prostate cancer (AVPC) could benefit from VP-16 treatment. TOP2A overexpression, rather than TOP2B, might be a good biomarker to predict response to VP-16
    • …
    corecore