259 research outputs found

    Thermodynamic modeling of the Pb + Bi melt evaporation under various pressures and temperatures

    Full text link
    The composition of the vapor phase and the partial pressures of vapor components have been defined at pressures from 102 to 107 Pa and in the temperature range from 500 to 3000 K. Diagrams of liquid-vapor phase equilibria for the Pb-Bi system have been constructed. A good agreement between experimental results and the carried out calculations on the Pb-Bi phase diagrams is observed. © 2012 Elsevier B.V. All rights reserved

    Thermophysical characteristics of radioactive graphite - Water vapor system

    Full text link
    The article considers thermophysical characteristics of radioactive graphite - water vapor system in temperature range 373-3273K. The research was made by thermodynamic modeling method using TERRA software. We determined 4 temperature intervals in which changes of thermophysical characteristics of radioactive graphite - water vapor system occur. © 2017 The Authors, published by EDP Sciences

    Prediction of physical-chemical and fire hazard characteristics by carbon chain rules. 2. Carboxylic acids

    Full text link
    Investigation of the dependence of physico-chemical and fire hazard properties from the chemical structure of carboxylic acids is carried out. Forecasting of the boiling temperature, the flash point, the temperature and the concentration flammability limits, the heats of combustion and vaporization is performed by the carbon chain rules (CCR). The following empirical equations for the calculation of physico-chemical and fire hazard indices from the conventional carbon chain and from the number of carbon atoms are proposed for the convenience of practical application of the CCR. A comparative analysis of the proposed methods for the flash point calculating and the already known methods of GOST 12.1.044-89, Mendeleev and ACD/Lab 2014 is carried out. It is shown, basically, that the new methods give more accurate calculation results than the comparison design procedures. © Siberian Federal University. All rights reserve

    Ionoluminescence: A New Tool for Nuclear Microprobes in Geology

    Get PDF
    When an ion beam in the energy range of a few MeV/amu impacts on a mineral, visible light can often be observed. This light, induced by energetic ions, is termed ionoluminescence (IL). The intensity and wavelength of the ionoluminescent light provide information concerning the nature of luminescence centers, such as trace substituents and structural defects, found in the mineral. This makes IL a useful complement to other methods of ion beam analysis (IBA), such as particle induced X-ray emission (PIXE) and Rutherford backscattering (RBS), in characterizing geological samples. In the present study, a proton or alpha particle beam was used for the IL excitation and IBA with a nuclear microprobe. The results obtained with IL were compared with those of cathodoluminescence (CL) and photoluminescence (PL)

    Thermal characteristics of the radioactive graphite-CuO-Na2CO3-K2CO3-NaCl-KCl system in argon atmosphere

    Full text link
    The article considers thermal characteristics of the radioactive graphite-CuO-Na2CO3-K2CO3-NaCl-KCl system in argon atmosphere. Thermodynamic calculations were carried out in the Terra program. Four temperature ranges with changes of thermal characteristics of the radioactive graphite-CuO-Na2CO3-K2CO3-NaCl-KCl system in argon atmosphere have been determined. © Published under licence by IOP Publishing Ltd

    The behavior of radioactive metals (Am, Eu, Sr) during the processing of radioactive graphite in salt melts

    Full text link
    The behavior of Am, Eu, Sr radionuclides was investigated by thermodynamic modeling method at heating of radioactive graphite in NaCl - KCl - Na2CO3 - K2CO3 molten salt with additives of nickel oxide NiO. The integrated thermodynamic analysis was carried out by means of TERRA software in temperature range 373-3273 K to determine possible composition of condensed and gaseous phases. It was established that americium is in gaseous state in temperature range 2773-3273 K. Europium is in the forms of gaseous EuO and Eu in temperature range 2373-3273 K. Strontium is in the forms of gaseous SrCl2, SrCl, Sr, SrO in temperature range 2373-3273 K. © Published under licence by IOP Publishing Ltd

    Effect of the anisotropy of monocrystalline silicon mechanical properties on the dynamic characteristics of a micromechanical gyroscope

    Get PDF
    The aim of the research was to determine the effect of temperature on mechanical properties of a micromechanical gyroscope with the sensing element mounted on a silicon wafer, with the crystallographic orientation of (100) (110) (111). The research is of current relevancy since the metrological characteristics that depend on the eigenfrequencies over the full temperature range are to be controlled. The temperature-modal analysis of the micromechanical gyroscope model was performed with ANSYS program. The temperature dependence for eigenfrequencies was obtained. The dependence of the scale factor on temperature for the most temperature-independent variant of sensor positioning on the wafer was determined. The developed mathematical model was used to find the forms of the output oscillations of the gyroscope

    Temperature Flammability Limits are Derivatives from Flash Point

    Full text link
    Наступление керосиновой эры привело не только повсеместному использованию керосиновых приборов, но к появлению новой причины взрывов и пожаров в быту и на производстве, которая была связана с несовершенством конструкций керосиновых ламп, керогазов и использованием небезопасного керосина. Основным критерием безопасности керосина выступила температура вспышки. При изучении этого критерия пожаровзрывоопасности были выявлены низшая и высшая температура вспышки или другими словами низший и верхний температурные пределы воспламенения.The advent of the kerosene era led not only to the widespread use of kerosene devices, but to the emergence of a new cause of explosions and fires in everyday life and production, which was associated with imperfect kerosene lamp designs, kerosene gases and the use of unsafe kerosene. The main criterion for the safety of kerosene was the flash point. In studying this criterion of fire and explosion hazard, a lower and higher flash point or, in other words, the lower and upper flammability temperature limits were detected

    The German Code of Flammable and Combustible Liquids

    Full text link
    Корни эволюции немецкой классификации легковоспламеняющихся/горючих жидкостей (ЛВЖ/ГЖ) связаны с началом керосиновой эры, чему способствовало два важных события: изобретение керосиновой лампы в 1853 году и американская нефтяная революция 1859 года. Эти события обусловили массовое вхождение керосина в повседневный быт людей. Побочным эффектом явился рост пожаров и взрывов, связанных с несовершенством керосиновых приборов, а также за счет применения «небезопасного» керосина. В связи с этим во многих странах начались работы по совершенствованию керосиновых прибор и разработке методов определения безопасного керосина. Первоначально появились огненные тесты. Плохая сходимость и воспроизводимость этих тестов поставила задачу по поиску новых критериев безопасного керосина. В результате решения этой задачи появились хорошо известные температура вспышки и температура воспламенения. За точку отчета безопасности керосина по температуре вспышки бралась комнатная температура. Первая немецкая керосиновая классификация появилась в 1903 году в Пруссии, по которой осветительные масла (керосины) по температуре вспышки делились на 3 класса. В начале 20-го столетия жидкости с температурой вспышки более 140оС выделяются в IV класс, а в 1925 году верхние границы для 2 и 3 классов были понижены до 55 и 100оС соответственно. В дальнейшем обновлённая прусская классификация была распространена на все ЛВЖ/ГЖ, а классы 1-3 были переименованы в А1–А3. В таком виде классификация ЛВЖ применялась в Третьем рейхе и ФРГ. В послевоенный период был добавлен новый класс В (жидкости с tвсп < 21оС и неограниченно растворимые в воде при 15оС). Таким образом, в основе современной немецкой классификации ЛВЖ/ГЖ лежит критерий для «безопасного» керосина, разработанный в Германии во второй половине 19-го столетия.The roots of the evolution of the German flammable and combustible liquids classification are associated with the beginning of the kerosene era, which was promoted by two important events: the invention of a kerosene lamp in 1853 and the American oil revolution of 1859. These events determined the mass entry of kerosene into the everyday life of people. A side effect was the growth of fires and explosions related to the imperfection of kerosene devices, as well as through the use of «unsafe» kerosene. In this regard, work on improving kerosene instruments and developing methods for determining safe kerosene has begun in many countries. Originally there were fire tests. Poor convergence and reproducibility of these tests set the task of finding new criteria for safe kerosene. As a result of solving this problem, a well-known flash and fire points appeared. The room temperature was taken as the reference point of kerosene safety by the flash point. The first German kerosene classification appeared in 1903 in Prussia, according to which the lighting oils (kerosene) were divided into three classes according to the flash point. At the beginning of the 20th century liquids with a flash point of more than 140°C were separated into the IV class, and in 1925 the upper limits for II and III grades were lowered to 55 and 100°C, respectively. In the future, the updated Prussian classification was extended to all flammable and combustible liquids, and classes 1-3 were renamed A1-A3. In this form, the classification was applied in the Third Reich and the Federal Republic of Germany. In the post-war period, a new class B (liquids with FP<21°C and unlimitedly soluble in water at 15°C). Thus, the basis for the modern German flammable and combustible liquids classification is the criterion for «safe» kerosene, developed in Germany in the second half of the 19th century
    corecore