16 research outputs found

    Expression of human protein S100A7 (psoriasin), preparation of antibody and application to human larynx squamous cell carcinoma

    Get PDF
    Abstract\ud \ud Background\ud Up-regulation of S100A7 (Psoriasin), a small calcium-binding protein, is associated with the development of several types of carcinomas, but its function and possibility to serve as a diagnostic or prognostic marker have not been fully defined. In order to prepare antibodies to the protein for immunohistochemical studies we produced the recombinant S100A7 protein in E. coli. mRNA extracted from human tracheal tumor tissue which was amplified by RT-PCR to provide the region coding for the S100A7 gene. The amplified fragment was cloned in the vector pCR2.1-TOPO and sub-cloned in the expression vector pAE. The protein rS100A7 (His-tag) was expressed in E. coli BL21::DE3, purified by affinity chromatography on an Ni-NTA column, recovered in the 2.0 to 3.5 mg/mL range in culture medium, and used to produce a rabbit polyclonal antibody anti-rS100A7 protein. The profile of this polyclonal antibody was evaluated in a tissue microarray.\ud \ud \ud Results\ud The rS100A7 (His-tag) protein was homogeneous by SDS-PAGE and mass spectrometry and was used to produce an anti-recombinant S100A7 (His-tag) rabbit serum (polyclonal antibody anti-rS100A7). The molecular weight of rS100A7 (His-tag) protein determined by linear MALDI-TOF-MS was 12,655.91 Da. The theoretical mass calculated for the nonapeptide attached to the amino terminus is 12,653.26 Da (delta 2.65 Da). Immunostaining with the polyclonal anti-rS100A7 protein generated showed reactivity with little or no background staining in head and neck squamous cell carcinoma cells, detecting S100A7 both in nucleus and cytoplasm. Lower levels of S100A7 were detected in non-neoplastic tissue.\ud \ud \ud Conclusions\ud The polyclonal anti-rS100A7 antibody generated here yielded a good signal-to-noise contrast and should be useful for immunohistochemical detection of S100A7 protein. Its potential use for other epithelial lesions besides human larynx squamous cell carcinoma and non-neoplastic larynx should be explored in future.FAPES

    Unaffected arm muscle hypercatabolism in dysphagic subacute stroke patients: the effects of essential amino Acid supplementation.

    No full text
    Alterations in muscle protein turnover of the unaffected side of stroke patients could contribute to physical disability. We investigated whether hypercatabolic activity occurred in unaffected arm muscle and whether supplemented essential amino acids (EAAs) could limit muscle hypercatabolism (MH). Thirty-eight dysphagic subacute stroke subjects (<3 months after acute event) (29 males + 9 females; 69.7 ± 11.4 yrs) were enrolled and randomized to receive 8 g/day EAAs (n = 19; EAA group) or isocaloric placebo (maltodextrin; n = 19, Plac group). Before randomization, all patients had their arterial (A) and venous (V) amino acids measured and muscle (A - V) differences calculated in the unaffected arm. Eight matched and healthy subjects served as controls. When compared to healthy controls, the entire stroke population showed significant muscle release (= negative value A - V) of the amino acid phenylalanine (phenyl-) indicating a prevalence of MH. Moreover, randomized EAA and Plac groups had similar rates of MH. After 38 days from the start of the protocol, the EAA group but not the Plac group had MH converted to balanced protein turnover or anabolic activity. We concluded that muscle protein metabolism of the unaffected arm of dysphagic subacute stroke individuals could be characterized by MH which can be corrected by supplemented EAAs

    Proteomic analysis of low- to high-grade astrocytomas reveals an alteration of the expression level of raf kinase inhibitor protein and nucleophosmin

    No full text
    Proteomic approaches have been useful for the identification of aberrantly expressed proteins in complex diseases such as cancer. These proteins are not only potential disease biomarkers, but also targets for therapy. The aim of this study was to identify differentially expressed proteins in diffuse astrocytoma grade II, anaplastic astrocytoma grade III and glioblastoma multiforme grade IV in human tumor samples and in non-neoplastic brain tissue as control using 2-DE and MS. Tumor and control brain tissue dissection was guided by histological hematoxylin/eosin tissue sections to provide more than 90% of tumor cells and astrocytes. Six proteins were detected as up-regulated in higher grade astrocytomas and the most important finding was nucleophosmin (NPM) (p < 0.05), whereas four proteins were down-regulated, among them raf kinase inhibitor protein (RKIP) (p < 0.05). We report here for the first time the alteration of NPM and RKIP expression in brain cancer. Our focus on these proteins was due to the fact that they are involved in the PI3K/AKT/mTOR and RAS/RAF/MAPK pathways, known for their contribution to the development and progression of gliomas. The proteomic data for NPM and RKIP were confirmed by Western blot, quantitative real-time PCR and immunohistochemistry. Due to the participation of NPM and RKIP in uncontrolled proliferation and evasion of apoptosis, these proteins are likely targets for drug development.FAPESP/Brazil[2005/53039-5]FAPESP/Brazil[2008/51360-9]FAPESP[04/12133-6]FAPESP[98/14247]Ludwig Institute for Cancer ResearchFAEPAFINE

    Baroreflex sensitivity variations in response to propofol anesthesia: comparison between normotensive and hypertensive patients

    No full text
    The aim of this paper is to compare baroreflex sensitivity (BRS) following anesthesia induction via propofol to pre-induction baseline values through a systematic and mathematically robust analysis. Several mathematical methods for BRS quantification were applied to pre-operative and intra-operative data collected from patients undergoing major surgery, in order to track the trend in BRS variations following anesthesia induction, as well as following the onset of mechanical ventilation. Finally, a comparison of BRS trends in chronic hypertensive patients (CH) with respect to non hypertensive (NH) patients was performed. 10 NH and 7 CH patients undergoing major surgery with American Society of Anesthesiologists classification score 2.5 ± 0.5 and 2.6 ± 0.5 respectively, were enrolled in the study. A Granger causality test was carried out to verify the causal relationship between RR interval duration and systolic blood pressure (SBP), and four different mathematical methods were used to estimate the BRS: (1) ratio between autospectra of RR and SBP, (2) transfer function, (3) sequence method and (4) bivariate closed loop model. Three different surgical epochs were considered: baseline, anesthetic procedure and post-intubation. In NH patients, propofol administration caused a decrease in arterial blood pressure (ABP), due to its vasodilatory effects, and a reduction of BRS, while heart rate (HR) remained unaltered with respect to baseline values before induction. A larger decrease in ABP was observed in CH patients when compared to NH patients, whereas HR remained unaltered and BRS was found to be lower than in the NH group at baseline, with no significant changes in the following epochs when compared to baseline. To our knowledge, this is the first study in which the autonomic response to propofol induction in CH and NH patients was compared. The analysis of BRS through a mathematically rigorous procedure in the perioperative period could result in the availability of additional information to guide therapy and anesthesia in uncontrolled hypertensive patients, which are prone to a higher rate of hypotension events occurring during general anesthesia induction

    The potential of cellulose nanocrystals in tissue engineering strategies

    No full text
    Cellulose nanocrystals (CNCs) are a renewable nanosized raw material that is drawing a tremendous level of attention from the materials community. These rod-shaped nanocrystals that can be produced from a variety of highly available and renewable cellulose-rich sources are endowed with exceptional physicochemical properties which have promoted their intensive exploration as building blocks for the design of a broad range of new materials in the past few decades. However, only recently have these nanosized substrates been considered for bioapplications following the knowledge on their low toxicity and ecotoxicological risk. This Review provides an overview on the recent developments on CNC-based functional biomaterials with potential for tissue engineering (TE) applications, focusing on nanocomposites obtained through different processing technologies usually employed in the fabrication of TE scaffolds into various formats, namely, dense films and membranes, hierarchical three-dimensional (3D) porous constructs (micro/nanofibers mats, foams and sponges), and hydrogels. Finally, while highlighting the major achievements and potential of the reviewed work on cellulose nanocrystals, alternative applications for some of the developed materials are provided, and topics for future research to extend the use of CNCs-based materials in the scope of the TE field are identified.The authors acknowledge the financial support from the Project RL1 - ABMR - NORTE-01-0124-FEDER-000016 cofinanced by North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF)
    corecore