4,988 research outputs found
Invariant NKT cells and rheumatic disease: Focus on primary sjogren syndrome
Primary Sjogren syndrome (pSS) is a complex autoimmune disease mainly affecting salivary and lacrimal glands. Several factors contribute to pSS pathogenesis; in particular, innate immunity seems to play a key role in disease etiology. Invariant natural killer (NK) T cells (iNKT) are a T-cell subset able to recognize glycolipid antigens. Their function remains unclear, but studies have pointed out their ability to modulate the immune system through the promotion of specific cytokine milieu. In this review, we discussed the possible role of iNKT in pSS development, as well as their implications as future markers of disease activity
Functionalization strategies of polymeric nanoparticles for drug delivery in Alzheimer’s disease: current trends and future perspectives
Alzheimer’s disease (AD), the most common form of dementia, is a progressive and multifactorial neurodegenerative disorder whose primary causes are mostly unknown. Due to the increase in life expectancy of world population, including developing countries, AD, whose incidence rises dramatically with age, is at the forefront among neurodegenerative diseases. Moreover, a definitive cure is not yet within reach, imposing substantial medical and public health burdens at every latitude. Therefore, the effort to devise novel and effective therapeutic strategies is still of paramount importance. Genetic, functional, structural and biochemical studies all indicate that new and efficacious drug delivery strategies interfere at different levels with various cellular and molecular targets. Over the last few decades, therapeutic development of nanomedicine at preclinical stage has shown to progress at a fast pace, thus paving the way for its potential impact on human health in improving prevention, diagnosis, and treatment of age-related neurodegenerative disorders, including AD. Clinical translation of nano-based therapeutics, despite current limitations, may present important advantages and innovation to be exploited in the neuroscience field as well. In this state-of-the-art review article, we present the most promising applications of polymeric nanoparticle-mediated drug delivery for bypassing the blood-brain barrier of AD preclinical models and boost pharmacological safety and efficacy. In particular, novel strategic chemical functionalization of polymeric nanocarriers that could be successfully employed for treating AD are thoroughly described. Emphasis is also placed on nanotheranostics as both potential therapeutic and diagnostic tool for targeted treatments. Our review highlights the emerging role of nanomedicine in the management of AD, providing the readers with an overview of the nanostrategies currently available to develop future therapeutic applications against this chronic neurodegenerative disease
Active shape correction of a thin glass/plastic X-ray mirror
Optics for future X-ray telescopes will be characterized by very large
aperture and focal length, and will be made of lightweight materials like glass
or plastic in order to keep the total mass within acceptable limits. Optics
based on thin slumped glass foils are currently in use in the NuSTAR telescope
and are being developed at various institutes like INAF/OAB, aiming at
improving the angular resolution to a few arcsec HEW. Another possibility would
be the use of thin plastic foils, being developed at SAO and the Palermo
University. Even if relevant progresses in the achieved angular resolution were
recently made, a viable possibility to further improve the mirror figure would
be the application of piezoelectric actuators onto the non-optical side of the
mirrors. In fact, thin mirrors are prone to deform, so they require a careful
integration to avoid deformations and even correct forming errors. This however
offers the possibility to actively correct the residual deformation. Even if
other groups are already at work on this idea, we are pursuing the concept of
active integration of thin glass or plastic foils with piezoelectric patches,
fed by voltages driven by the feedback provided by X-rays, in intra-focal setup
at the XACT facility at INAF/OAPA. In this work, we show the preliminary
simulations and the first steps taken in this project
Experiences of Canadian Oncologists with Difficult Patient Deaths and Coping Strategies Used
Objectives We aimed to explore and identify what makes patient death more emotionally difficult for oncologists and how oncologists cope with patient death. Methods A convenience sample of 98 Canadian oncologists (50 men, 48 women) completed an online survey that included a demographics section and a section about patient death. Results More than 80% of oncologists reported that patient age, long-term management of a patient, and unexpected disease outcomes contributed to difficult patient loss. Other factors included the doctor–patient relationship, identification with the patient, caregiver-related factors, oncologist-related factors, and “bad deaths.” Oncologists reported varying strategies to cope with patient death. Most prevalent was peer support from colleagues, including nurses and other oncologists. Additional strategies included social support, exercise and meditation, faith, vacations, and use of alcohol and medications. Conclusions Oncologists listed a number of interpersonal and structural factors that make patient death challenging for them to cope with. Oncologists reported a number of coping strategies in responding to patient death, including peer support, particularly from nursing colleagues. No single intervention will be suitable for all oncologists, and institutions wishing to help their staff cope with the emotional difficulty of patient loss should offer a variety of interventions to maximize the likelihood of oncologist participation
Polyether from a biobased Janus molecule as surfactant for carbon nanotubes
A new polyether (PE) was prepared from a biobased Janus molecule, 2-(2,5-dimethyl-1H-pyrrol-1-yl)-1,3- propanediol (serinol pyrrole, SP). SP was synthesized with very high yield (about 96%) and high atom efficiency (about 80%) by reacting a biosourced molecule, such as serinol, with 2,5-hexanedione in the absence of solvent or catalyst. The reaction of SP with 1,6-dibromohexane led to PE oligomers, that were used as surfactants for multiwalled carbon nanotubes (MWCNT), in ecofriendly polar solvents such as acetone and ethyl acetate. The synergic interaction of aromatic rings and oxyalkylene sequences with the carbon allotrope led to dramatic improvement of surfactant efficiency: only 24% of SP based PE was extracted with ethyl acetate from the adduct with MWCNT, versus 98% of a typical pluronic surfactant. Suspensions of MWCNT-PE adducts in ethyl acetate were stable for months. High resolution transmission electron microscopy revealed a film of oligomers tightly adhered to MWCNT surface
Modular implant design affects metal ion release following metal-on-metal hip arthroplasty: a retrospective study on 75 cases
Metal-on-Metal (MoM) total hip arthroplasty (THA) has been associated to wear and metal-ions release, controversially related to a variety of clinical complications. Little is known about the relevant design-dependent parameters involved in this process. The present study investigated the correlation between metal ion release in blood and revision rate as a function of: (i) specific MoM implant modular design parameters, (i.e. acetabular cup and femoral head diameters, taper adapter material and size, femoral neck material and modularity and stem size); (ii) MoM bilaterality. Co and Cr ions concentration levels in blood of 75 patients were retrospectively-evaluated with a mean follow-up of 4.8 years (range: 1.8-6.3). Patients were divided in a unilateral and a bilateral group. Statistical analysis was performed to find any significant difference related to acetabular cup diameter, femoral head diameter, taper adapter material/size, neck material/size and stem size. The bilateral MoM group had 4-times higher metal ion levels in blood than the unilateral one (p=0.017 only Cr), related to a higher revision rate (30% vs 20%): differences were 10-times higher particularly with a 48 mm femoral head diameter (p=0.012) and a Ti-alloy neck (p=0.041). Within the monolateral group using a shorter taper adapter and a shorter neutrally-oriented neck demonstrated higher ion levels (p=0.038 only Cr and p=0.008 only Co, respectively). The aforementioned design-features and MoM bilaterality are important risk-factors for metal-ion release in modular MoM THA
- …