3,857 research outputs found

    Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks

    Full text link
    We develop a method of spectroscopy that uses a weak static magnetic field to enable direct optical excitation of forbidden electric-dipole transitions that are otherwise prohibitively weak. The power of this scheme is demonstrated using the important application of optical atomic clocks based on neutral atoms confined to an optical lattice. The simple experimental implementation of this method -- a single clock laser combined with a DC magnetic field-- relaxes stringent requirements in current lattice-based clocks (e.g., magnetic field shielding and light polarization), and could therefore expedite the realization of the extraordinary performance level predicted for these clocks. We estimate that a clock using alkaline earth-like atoms such as Yb could achieve a fractional frequency uncertainty of well below 10^-17 for the metrologically preferred even isotopes

    The critical current of YBa2Cu3O7-d Low Angle Grain Boundaries

    Get PDF
    Transport critical current measurements have been performed on 5 degree [001]-tilt thin film YBa2Cu3O7-delta single grain boundaries with magnetic field rotated in the plane of the film, phi. The variation of the critical current has been determined as a function of the angle between the magnetic field and the grain boundary plane. In applied fields above 1 T the critical current, j_c, is found to be strongly suppressed only when the magnetic field is within an angle phi_k of the grain boundary. Outside this angular range the behavior of the artificial grain boundary is dominated by the critical current of the grains. We show that the phi dependence of j_c in the suppressed region is well described by a flux cutting model.Comment: To be published in PRL, new version with minor changes following referees report

    Controlling the exchange interaction using the spin-flip transition of antiferromagnetic spins in Ni81_{81}Fe19_{19} / α\alpha-Fe2_2O3_3

    Full text link
    We report studies of exchange bias and coercivity in ferromagnetic Ni81_{81}Fe19_{19} layers coupled to antiferromagnetic (AF) (0001), (112ˉ\bar{2}0), and (110ˉ\bar{0}2) α\alpha-Fe2_2O3_3 layers. We show that AF spin configurations which permit spin-flop coupling give rise to a strong uniaxial anisotropy and hence a large coercivity, and that by annealing in magnetic fields parallel to specific directions in the AF we can control either coercivity or exchange bias. In particular, we show for the first time that a reversible temperature-induced spin reorientation in the AF can be used to control the exchange interaction.Comment: 15 pages, 5 figures, submitted to Phys. Rev. Let

    Report on a collecting trip of the British Myriapod Group to Hungary in 1994

    Get PDF
    During a collecting trip participated jointly by the members of the British Myriapod Group and by Hungarian experts in 1994, 34 species of millipedes, 14 of centipedes, 8 of woodlice and 73 of spiders were recorded from Hungary. Two records of the millipede species Boreoiulus tenuis (Bigler, 1913) and Styrioiulus styricus (Verhoeff, 1896) were new to the fauna of Hungary

    Photoinduced time-resolved electrodynamics of superconducting metals and alloys

    Full text link
    The photoexcited state in superconducting metals and alloys was studied via pump-probe spectroscopy. A pulsed Ti:sapphire laser was used to create the non-equilibrium state and the far-infrared pulses of a synchrotron storage ring, to which the laser is synchronized, measured the changes in the material optical properties. Both the time- and frequency- dependent photoinduced spectra of Pb, Nb, NbN, Nb{0.5}Ti{0.5}N, and Pb{0.75}Bi{0.25} superconducting thin films were measured in the low-fluence regime. The time dependent data establish the regions where the relaxation rate is dominated either by the phonon escape time (phonon bottleneck effect) or by the intrinsic quasiparticle recombination time. The photoinduced spectra measure directly the reduction of the superconducting gap due to an excess number of quasiparticles created by the short laser pulses. This gap shift allows us to establish the temperature range over which the low fluence approximation is valid.Comment: 12 pages with 10 figure

    Observation and absolute frequency measurements of the 1S0 - 3P0 optical clock transition in ytterbium

    Full text link
    We report the direct excitation of the highly forbidden (6s^2) 1S0 - (6s6p) 3P0 optical transition in two odd isotopes of ytterbium. As the excitation laser frequency is scanned, absorption is detected by monitoring the depletion from an atomic cloud at ~70 uK in a magneto-optical trap. The measured frequency in 171Yb (F=1/2) is 518,295,836,593.2 +/- 4.4 kHz. The measured frequency in 173Yb (F=5/2) is 518,294,576,850.0 +/- 4.4 kHz. Measurements are made with a femtosecond-laser frequency comb calibrated by the NIST cesium fountain clock and represent nearly a million-fold reduction in uncertainty. The natural linewidth of these J=0 to J=0 transitions is calculated to be ~10 mHz, making them well-suited to support a new generation of optical atomic clocks based on confinement in an optical lattice.Comment: 4 pages, 3 figure

    Critical currents in vicinal YBa2_2Cu3_3O7δ_{7-\delta} films

    Full text link
    Most measurements of critical current densities in YBa2_2Cu3_3O7δ_{7-\delta} thin films to date have been performed on films where the \textit{c}-axis is grown normal to the film surface. With such films, the analysis of the dependence of jcj_c on the magnetic field angle is complex. The effects of extrinsic contributions to the angular field dependence of jcj_c, such as the measurement geometry and disposition of pinning centres, are convoluted with those intrinsically due to the anisotropy of the material. As a consequence of this, it is difficult to distinguish between proposed FLL structure models on the basis of angular critical current density measurements on \textit{c}-axis films. Films grown on mis-cut (vicinal) substrates have a reduced measurement symmetry and thus provide a greater insight into the critical current anisotropy. In this paper previous descriptions of the magnetic field angle dependence of jcj_c in YBa2_2Cu3_3O7δ_{7-\delta} are reviewed. Measurements on YBa2_2Cu3_3O7δ_{7-\delta} thin films grown on a range of vicinal substrates are presented and the results interpreted in terms of the structure and dimensionality of the FLL in YBa2_2Cu3_3O7δ_{7-\delta}. There is strong evidence for a transition in the structure of the flux line lattice depending on magnetic field magnitude, orientation and temperature. As a consequence, a simple scaling law can not, by itself, describe the observed critical current anisotropy in YBa2_2Cu3_3O7δ_{7-\delta}. The experimentally obtained jc(θ)j_c(\theta) behaviour of YBCO is successfully described in terms of a kinked vortex structure for fields applied near parallel to the \textit{a-b} planes.Comment: 10 pages, 12 figures, Submitted to PR

    Hyper-Ramsey Spectroscopy of Optical Clock Transitions

    Full text link
    We present non-standard optical Ramsey schemes that use pulses individually tailored in duration, phase, and frequency to cancel spurious frequency shifts related to the excitation itself. In particular, the field shifts and their uncertainties of Ramsey fringes can be radically suppressed (by 2-4 orders of magnitude) in comparison with the usual Ramsey method (using two equal pulses) as well as with single-pulse Rabi spectroscopy. Atom interferometers and optical clocks based on two-photon transitions, heavily forbidden transitions, or magnetically induced spectroscopy could significantly benefit from this method. In the latter case these frequency shifts can be suppressed considerably below a fractional level of 10^{-17}. Moreover, our approach opens the door for the high-precision optical clocks based on direct frequency comb spectroscopy.Comment: 5 pages, 4 figure
    corecore