123 research outputs found

    Three dimensional four-fermion models - A Monte Carlo study

    Full text link
    We present results from numerical simulations of three different 3d four-fermion models that exhibit Z_2, U(1), and SU(2) x SU(2) chiral symmetries, respectively. We performed the simulations by using the hybrid Monte Carlo algorithm. We employed finite size scaling methods on lattices ranging from 8^3 to 40^3 to study the properties of the second order chiral phase transition in each model. The corresponding critical coupling defines an ultraviolet fixed point of the renormalization group. In our high precision simulations, we detected next-to-leading order corrections for various critical exponents and we found them to be in good agreement with existing analytical large-N_f calculations.Comment: 15 pages, 7 figures, and 2 table

    Broadening of a nonequilibrium phase transition by extended structural defects

    Get PDF
    We study the effects of quenched extended impurities on nonequilibrium phase transitions in the directed percolation universality class. We show that these impurities have a dramatic effect: they completely destroy the sharp phase transition by smearing. This is caused by rare strongly coupled spatial regions which can undergo the phase transition independently from the bulk system. We use extremal statistics to determine the stationary state as well as the dynamics in the tail of the smeared transition, and we illustrate the results by computer simulations.Comment: 4 pages, 4 eps figures, final version as publishe

    A Cluster Method for the Ashkin--Teller Model

    Full text link
    A cluster Monte Carlo algorithm for the Ashkin-Teller (AT) model is constructed according to the guidelines of a general scheme for such algorithms. Its dynamical behaviour is tested for the square lattice AT model. We perform simulations on the line of critical points along which the exponents vary continuously, and find that critical slowing down is significantly reduced. We find continuous variation of the dynamical exponent zz along the line, following the variation of the ratio α/ν\alpha/\nu, in a manner which satisfies the Li-Sokal bound zclusterα/νz_{cluster}\geq\alpha/\nu, that was so far proved only for Potts models.Comment: 18 pages, Revtex, figures include

    Spherical Model in a Random Field

    Full text link
    We investigate the properties of the Gibbs states and thermodynamic observables of the spherical model in a random field. We show that on the low-temperature critical line the magnetization of the model is not a self-averaging observable, but it self-averages conditionally. We also show that an arbitrarily weak homogeneous boundary field dominates over fluctuations of the random field once the model transits into a ferromagnetic phase. As a result, a homogeneous boundary field restores the conventional self-averaging of thermodynamic observables, like the magnetization and the susceptibility. We also investigate the effective field created at the sites of the lattice by the random field, and show that at the critical temperature of the spherical model the effective field undergoes a transition into a phase with long-range correlations r4d\sim r^{4-d}.Comment: 29 page

    Scaling and nonscaling finite-size effects in the Gaussian and the mean spherical model with free boundary conditions

    Full text link
    We calculate finite-size effects of the Gaussian model in a L\times \tilde L^{d-1} box geometry with free boundary conditions in one direction and periodic boundary conditions in d-1 directions for 2<d<4. We also consider film geometry (\tilde L \to \infty). Finite-size scaling is found to be valid for d3 but logarithmic deviations from finite-size scaling are found for the free energy and energy density at the Gaussian upper borderline dimension d* =3. The logarithms are related to the vanishing critical exponent 1-\alpha-\nu=(d-3)/2 of the Gaussian surface energy density. The latter has a cusp-like singularity in d>3 dimensions. We show that these properties are the origin of nonscaling finite-size effects in the mean spherical model with free boundary conditions in d>=3 dimensions. At bulk T_c in d=3 dimensions we find an unexpected non-logarithmic violation of finite-size scaling for the susceptibility \chi \sim L^3 of the mean spherical model in film geometry whereas only a logarithmic deviation \chi\sim L^2 \ln L exists for box geometry. The result for film geometry is explained by the existence of the lower borderline dimension d_l = 3, as implied by the Mermin-Wagner theorem, that coincides with the Gaussian upper borderline dimension d*=3. For 3<d<4 we find a power-law violation of scaling \chi \sim L^{d-1} at bulk T_c for box geometry and a nonscaling temperature dependence \chi_{surface} \sim \xi^d of the surface susceptibility above T_c. For 2<d<3 dimensions we show the validity of universal finite-size scaling for the susceptibility of the mean spherical model with free boundary conditions for both box and film geometry and calculate the corresponding universal scaling functions for T>=T_c.Comment: Submitted to Physical Review

    Order-Disorder Transition in a Two-Layer Quantum Antiferromagnet

    Full text link
    We have studied the antiferromagnetic order -- disorder transition occurring at T=0T=0 in a 2-layer quantum Heisenberg antiferromagnet as the inter-plane coupling is increased. Quantum Monte Carlo results for the staggered structure factor in combination with finite-size scaling theory give the critical ratio Jc=2.51±0.02J_c = 2.51 \pm 0.02 between the inter-plane and in-plane coupling constants. The critical behavior is consistent with the 3D classical Heisenberg universality class. Results for the uniform magnetic susceptibility and the correlation length at finite temperature are compared with recent predictions for the 2+1-dimensional nonlinear σ\sigma-model. The susceptibility is found to exhibit quantum critical behavior at temperatures significantly higher than the correlation length.Comment: 11 pages (5 postscript figures available upon request), Revtex 3.

    Search for Kosterlitz-Thouless transition in a triangular Ising antiferromagnet with further-neighbour ferromagnetic interactions

    Full text link
    We investigate an antiferromagnetic triangular Ising model with anisotropic ferromagnetic interactions between next-nearest neighbours, originally proposed by Kitatani and Oguchi (J. Phys. Soc. Japan {\bf 57}, 1344 (1988)). The phase diagram as a function of temperature and the ratio between first- and second- neighbour interaction strengths is thoroughly examined. We search for a Kosterlitz-Thouless transition to a state with algebraic decay of correlations, calculating the correlation lengths on strips of width up to 15 sites by transfer-matrix methods. Phenomenological renormalization, conformal invariance arguments, the Roomany-Wyld approximation and a direct analysis of the scaled mass gaps are used. Our results provide limited evidence that a Kosterlitz-Thouless phase is present. Alternative scenarios are discussed.Comment: 10 pages, RevTeX 3; 11 Postscript figures (uuencoded); to appear in Phys. Rev. E (1995

    Tricritical Behavior of Two-Dimensional Scalar Field Theories

    Full text link
    We compute by Monte Carlo numerical simulations the critical exponents of two-dimensional scalar field theories at the λϕ6\lambda\phi^6 tricritical point. The results are in agreement with the Zamolodchikov conjecture based on conformal invariance.Comment: 13 pages, uuencode tar-compressed Postscript file, preprint numbers: IF/UFRJ/25/94, DFTUZ 94.06 and NYU--TH--94/10/0

    Ising cubes with enhanced surface couplings

    Full text link
    Using Monte Carlo techniques, Ising cubes with ferromagnetic nearest-neighbor interactions and enhanced couplings between surface spins are studied. In particular, at the surface transition, the corner magnetization shows non-universal, coupling-dependent critical behavior in the thermodynamic limit. Results on the critical exponent of the corner magnetization are compared to previous findings on two-dimensional Ising models with three intersecting defect lines.Comment: 4 pages, 2 figures included, submitted to Phys. Rev.

    Cycling exercise classes may be bad for your (hearing) health

    Full text link
    OBJECTIVES/HYPOTHESIS: 1) Determine feasibility of smartphone-based mobile technology to measure noise exposure; and 2) measure noise exposure in exercise spin classes. STUDY DESIGN: Observational Study. METHODS: The SoundMeter Pro app (Faber Acoustical, Salt Lake City, UT) was installed and calibrated on iPhone and iPod devices in an audiology chamber using an external sound level meter to within 2 dBA of accuracy. Recording devices were placed in the bike cupholders of participants attending spin classes in Boston, Massachusetts (n = 17) and used to measure sound level (A-weighted) and noise dosimetry during exercise according to National Institute for Occupational Safety and Health (NIOSH) guidelines. RESULTS: The average length of exposure was 48.9 ± 1.2 (standard error of the mean) minutes per class. Maximum sound recorded among 17 random classes was 116.7 dBA, which was below the NIOSH instantaneous exposure guideline of 140 dBA. An average of 31.6 ± 3.8 minutes were spent at >100 dBA. This exceeds NIOSH recommendations of 15 minutes of exposure or less at 100 dBA per day. Average noise exposure for one 45-minute class was 8.95 ± 1.2 times the recommended noise exposure dose for an 8-hour workday. CONCLUSIONS: Preliminary data shows that randomly sampled cycling classes may have high noise levels with a potential for noise-induced hearing loss. Mobile dosimetry technology may enable users to self-monitor risk to their hearing and actively engage in noise protection measures. LEVEL OF EVIDENCE: NA Laryngoscope, 127:1873-1877, 2017.Accepted manuscrip
    corecore