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Broadening of a nonequilibrium phase transition by extended structural defects

Thomas Vojta
Department of Physics, University of Missouri-Rolla, Rolla, Missouri 65409, USA
(Received 1 March 2004; published 19 August 2004

We study the effects of quenched extended impurities on nonequilibrium phase transitions in the directed
percolation universality class. We show that these impurities have a dramatic effect: they completely destroy
the sharp phase transition by smearing. This is caused by rare strongly coupled spatial regions which can
undergo the phase transition independently from the bulk system. We use extremal statistics to determine the
stationary state as well as the dynamics in the tail of the smeared transition, and we illustrate the results by
computer simulations.
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In nature, thermal equilibrium is more of an exception In this paper, we show that extended defects have an even
than the rule. In recent years, phase transitions between difnore dramatic effect on nonequilibrium phase transitions in
ferent nonequilibrium states have become a topic of greathe DP universality class; they destroy the sharp transition by
interest. A prominent class of nonequilibrium phase transismearing. This is caused by phenomena similar to but stron-
tions separates active, fluctuating states from inactive, atger than the usual Griffiths effecfd4,29: rare strongly
sorbing states where fluctuations cease entirely. These aBpupled spatial regions can undergo the transition indepen-
sorbing state transitions have applications ranging fronyently of the bulk system. In the tail of the smeared transi-
physics to chemistry and to biolog§—4. The generic uni- tjon the spatial density distribution is very inhomogeneous,

versality class for absorbing state transitions is directed pet;ih the average stationary density and the survival probabil-
colation(DP) [5]. According to a conjecture by Janssen andiy, genending exponentially on the control parameter. The

by Grassbergei6], all absorbing state transitions with a sca- approach of the average density to this exponentially small

lar order parameter, short-range interactions, and no extrg. .. : ;
: ’ : . tionary val rs in two st tretch xponential
symmetries or conservation laws belong to this class. Ex-gta onary vaiue occurs 0 stages, a stretched exponentia

amples include the transitions in the contact procgs decay a_tmtermedlate tlme_s, followed py power-law behavior
catalytic reactiong8], interface growth[9], and turbulence a_t late times. In the following, we derive these results for a
[10]. However, despite its ubiquity in theory and simulations, disordered contact process, illustrate them by computer
clearcut experimental realizations of the DP universalitySimulations, and discuss their generality and importance.
class are strangely lackirid1]. The only verification so far Our starting point is the clean contact procggg a pro-
seems to be found in the spatiotemporal intermittency in ferfotypical system in the DP universality class. It is defined on
rofluidic spikes[12]. ad-dimensional hypercubic lattice. Each sitean be vacant
A possible reason for this apparent discrepancy is the imor active, i.e. occupied by a particle. During the time evolu-

purities, i.e., quenched spatial disorder. According to thdion, particles are created at vacant sites at a xai&2d)
Harris criterion[13,14, the DP universality class is unstable wheren is the number of active nearest neighbor sites and
against disorder, because t{spatia) correlation length ex- the creation raté is the control parameter. Particles are an-
ponentv, violates the inequalityy, >2/d for all spatial nihilated at unit rate. For smaN, annihilation dominates,
dimensionalitiesd<4. Indeed, in the corresponding field and the absorbing state without any particles is the only
theory, spatial disorder leads to runaway flow of the renorsteady state. For large there is a steady state with finite
malization grou(RG) equationg15], destroying the DP be- particle density(active phasg The two phases are separated
havior. Several other studi¢$6—-19 agreed on the instabil- y 5 nonequilibrium phase transition in the DP universality
ity of DP against spatial disorder, but a consistent picture hagj;gg ath =22,
been slow to evolve. Recently, Hooybergttsal. applied the We introduce quenched spatial disorder by making the
E;mggggggrf?g?]ahsgﬁg t?htge h(;lgrjl?;;gpljgfa(a-slilsuw';?r osr?g creation ratex a random function of the lattice site. Extended
di : : impurities can be described by disorder perfectly correlated

isorder RG22 these author_s shoyved that the transitian in d. dimensions, but uncorrelated in the remainitig-d
least for sufficiently strong disordeis controlled by an ex- _d, dimensions. is thus a function ofr,, which is the

otic infinite-randomness fixed point with activated rather ¢ = - X
than the usual power-law scaling. In many real systems, thQrOJectlon of the position vectar on the uncorrelated direc-

disorder does not consist of point defects but of dislocationdons- For definiteness, we assume that Xie) have a bi-
disordered layers, or grain boundaries. The effects of sucRary probability distribution

extended defects are generically stronger than that of uncor-

related disorder, as has been shown by detailed studies of ~ P[A(r)]=(1-p)d(\(r;) =\) + ps(\(r;) —cN), (1)
equilibrium systems ranging from the exactly solved

McCoy-Wu model[23] and several RG studig®4—27 to ~ wherep andc are constants between 0 and 1. In other words,
the discovery of infinite-randomness critical behavior in thethere are extended impurities of dengityhere the creation
corresponding quantum Ising mod&i8]. rate\ is reduced by a factac.
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Let us now consider the effects of rare disorder fluctua- p(\) ~ exd-B(\ — )\g)—drn] (5)
tions in this system. In analogy to the Griffiths phenomenon
[14,29, there is a small but finite probability for finding reaching the clean critical point®. Analogous arguments
large spatial regions devoid of impurities. These rare regionsan be made for the survival probabili(\) of a single
can be locally in the active phase, even if the bulk system iseed site. If the seed site is on an active rare region it will
still in the inactive phase. For the largest rare regions thisurvive with a probability that depends anwith a power
starts to happen whex crosses the clean critical poiwﬁ. law. If it is not on an active rare region, the seed will die. To
Since the impurities in our system are extended, each rarexponential accuracy the survival probability is thus also
region is infinite ind, dimensions but finite in the remaining given by Eq.(5).
d, dimensions. This is a crucial difference from systems with The local(spatia) density distribution in the tail of the
uncorrelated disorder, where the rare regions are finite. In olmeared transition is very inhomogeneous. On active rare
system, each rare region can therefore undergo a real phasggions, the density is of the same order of magnitude as in
transitionindependentlpf the rest of the system. Thus, those the clean system. Away from these regions it decays expo-
rare regions that are locally in the ordered phase will have aentially. The typical local density,,, can be estimated from
true nonzero stationary density, even if the bulk system ighe typical distance of any point from the nearest active rare

still in the inactive phase. region. From Eq(4) we obtain
The resulting global phase transition is very different o
from a conventional continuous phase transition, where a Fyp ~ EXABN = Ag)™*"4/d,]. (6)

nonzero order parameter develops as a collective effect o
the entire system, accompanied by a diverging correlatio
length in all directions. In contrast, in our system, the order o Tléo _ _\0\-d,v
parameter develops very inhomogeneously in space with dif- Pyp~ € v/ ~ exp{— C exgd B(A )4 (7)
ferent parts of the systeqne., differentr, regiong ordering  where¢, is the bulk correlation lengtkwhich is finite and
independently at different. Correspondingly, the correlation changes slowly across the smeared transitimd C is a
length in the uncorrelated directions remains finite across theonstant. A comparison with E@5) shows that the relation
transition. This defines a smeared transition. Thus, extendasktween the typical and the average density is exponential,
impurities lead to a smearing of the DP phase transition. ||ngtyp| ~ p Y “indicating an extremely broad local density
We now use extremal statistics to derive the properties iRjistribution.
the tail of the smeared transition, i.e., in the parameter region \We now turn to the dynamics in the tail of the smeared
where a few active rare regions exist, but their density is s@ransition. The long-time decay of the density is dominated
small that they can be treated as independent. We start withy the rare regions while the bulk contribution decays expo-
the stationary behavior. The probability for finding a rare  nentially. According to finite-size scaling0], the behavior
region of linear size, devoid of impurities is, up to preex- of the correlation time, of a single rare region of size, in
ponential factors, given by the vicinity of the clean bulk critical point can be modeled by

t this distance, the local density has decayed to

" = _ —
W~ eXF(_ er ) (2) &(Ayl—r) - LEZVL ZVL)/VL|A _ ALr l/VL|—ZVL ) (8)

with p=-In(1-p). As discussed above, such a region undery,. . A=\-72>0, z is the d-dimensional bulk dynamical
goes a true phase transition to the active phase at so

: o . Mitical exponent, an@, andz are the correlation length and
0 ' 1
Ac(L)>Ac. According to finite-size scalingB0], dynamical exponent of d,-dimensional system. Let us first

Ne(Ly) = NO=AL?, 3) consider the time evolution of the density &\2. For A

=0, the correlation tim¢8) simplifies to&~ L?. To exponen-

where¢ is the clean(d-dimensional finite-size scaling shift tial accuracy, the time dependence of the average density is
exponent andA is the amplitude for the crossover from a obtained from
d-dimensional bulk system to a “slab” infinite oy dimen-
sions but finite ind, dimensions. If the total dimensionality ~ d
d=d,+d, <4, hyperscaling is valid ané=1/v, which we PO~ f dL, exp(~PL" - DU/LY) 9)
assume from now on. Combining Eq8) and(3) we obtain
the probability for finding a rare region which becomes ac-where D is a constant. Using the saddle point method to
tive at\. as evaluate this integral, we find the leading long-time decay of

o the density to be given by a stretched exponential,
W()\c) -~ ex;{— B()\c - )\c) rvi] (4)

 _1d/(d,+2)
for )\c—)\g—>0+. HereB=pA%"L. The total(average density Inp(® ! ' (10
p at a certain\ is obtained by summing over all active rare  For A>\2, we repeat the saddle point analysis with the
regions, i.e., all regions withh,<\. Since the functional full expression(8) for the correlation length. For intermedi-
dependence o of the density on any given active island is ate timest<t,~(A-A)~@*2¥. the decay of the average
of power-law type it does not enter the leading exponentialglensity is still given by the stretched exponentiad). For
but only the preexponential factors. Thus, the stationary dertimes larger than the crossover timgthe system realizes
sity develops an exponential tail that some of the rare regions are in the active phase and
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contribute to a finite steady state density. The approach of the 0.15= cloan, L=1000
average density to this steady state value is characterized by + p=0.3, L= 100 f‘tf
a power law: x p=0.3, L= 300
) 0.1l ¥ p=0.3, L=1000 | &
plt) = p(ee) ~ 7. (1D) s
A

The value ofy cannot be found by our methods since it A.“ o
depends on the neglected preexponential factors. 0.05} A“A <
We now illustrate the smearing of the phase transition by 3
A
A
A

the results of a computer simulation of a two-dimensional ¥
(2D) contact process with linear defe¢ts=d,=1). To reach o b X
the rather large system sizes necessary to observe exponen- T 105 11 115 1.2

tially rare events, we consider a version of the contact pro-
cess with infinite-range couplings in the correlated direction
(parallel to the impuritiesbut nearest-neighbor couplings in
the uncorrelated directiofperpendicular to the defect lines
While this infinite-range model will not be quantitatively
comparable to a short-range contact process, it provides a
simple example for the smearing mechanism. Moreover,
since the smearing relies only on a single rare region under-
going a true phase transition, we expect that the results will
qualitatively valid for a short-range contact process(twith
the appropriate changes to the expongnts

Because the couplings in the correlated direction are of
infinite range, this dimension can be treated exactly in mean-
field theory. This leads to a set of coupled local mean-field
equations for the local densitigs,

J N(X)

apxz —pxt T(l — P (Px1+ 2P+ pysr) - (12

—_

5

m
)
<%
5 1
[}

These equations can easily be solved numerically. We study 0.5
systems with several dilutions=0.2, ...,0.6 and sizes of up
to L=1C° in the uncorrelated direction; the impurity strength 0 055 Y 075 ]
is ¢=0.2 for all calculations. T oan(p)

To determine the stationary state we solve the equations
(9] 3t)p=0 in a self-consistency cycle. Our results are sum- FIG. 1. Top: Overview of the steady state density of a clean
marized in Fig. 1. The top panel shows the ta@merage (P=0) and a dilutedp=0.3) system. Center: Logarithm of the den-
densityp for a clean(p=0) and a dirty(p=0.3) system. The Sity as a function of A=\ "2 for several dilutionp andL=10%
clean system has the expected sharp phase transitian atThe (_Jlata are averages over 100 disorder realizations. The solid lines
:)\2:1 with the mean-field critical exponeg=1. The data are fl_ts to Eq(5) with d,», =1/2. Bottom: Decay constarB as a
of the disordered system seem to suggest a transition at Tnction of =I1-p).
~1.04. However, a closer inspection shows that the singu-
larity is smeared. Note that the density data are essentially
size independent. Therefore, the observed rounding cannot

3

be due to finite-size effects. We conclude that the smearing is 4, 510'2 )
an intrinsic effect of the infinite system. For comparison with FING 10
the analytical predictioi), the center panel shows the loga- 5

Inp

rithm of the total density as a function @k —\%)~*2 for
different impurity concentrationg. Note that in our infinite- 10
range modelv, =1/¢=1/2. Thedata follow Eq.(5) over 45} [2=1, 1,005, 1.01, 1.02

1 0t0 1000

several orders of magnitude jn Fits of the data to Eq5) op| Lo bottom o top

are used to determine the decay constdahtsThe bottom 10 30 100 300 1000

panel of Fig. 1 shows that these decay constants depend lin- !

early onp=-In(1-p), as predicted. FIG. 2. Densityp vs. timet for a system of sizé& =10, dilution

To study the time evolution we numerically integrate thep=0.5 and several (averages over 25 disorder realizatipr&olid
local mean-field equationgl?), starting from a homoge- line: Fit of theh=1 data(t>100) to Eq.(10) giving an exponent of
neous initial state witlp=1. Figure 2 summarizes our results approx. 0.32. Inset: Approach to the steady state densityxfor
for a system of sizé.=1CF with dilution p=0.5. The main =1.01. Solid line: Fit of the data for>100 to (11), giving an
panel shows a log-log plot of |mvst. This allows us to test exponent ofyy~2.6.
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the stretched exponential behavior predicted in @) for  existence of a true phase transition on an isolated rare region.
the time dependence of at the clean critical coupling. It should therefore apply not only to the DP universality
=\2=1. We find that the data indeed follow a stretched ex-class, but to an entire family of nonequilibrium universality
ponential with an exponent of approximately 0.32, in excel-classes for spreading processes and reaction-diffusion sys-
lent agreement with the analytical predictial/(d,+2)  tems. Note that, while the presence or absence of smearing is
=1/3. For\>\{, the decay initially follows the stretched ynijversal in the sense of critical phenomeitadepends on
exponential, but eventually the density approaches its finitgymmetries and dimensionality opjythe functional form of
steady state value. The inset of Fig. 2 shows a log-log plot ofye density and other observablesiat universal, it depends
(1)~ psteaqyVSt- The data clearly display power-law behavior o the details of the disorder distributig8]. Smearing phe-
in agreement with Eq(11). A fit to this equation gives an  nomena similar to the one found here can also occur at equi-
exponent valu_e ofy=2.6. _librium phase transitions. At quantum phase transitions in
To summarize, we have demonstrated that extended iMgnerant electron systems, even pointlike impurities can lead
purities destroy the sharp DP phase transition in the contagh smearing32). In contrast, for the classical Isirgleisen-
process by smearing. In the remaining paragraphs we discuggrqg universality class, the impurities have to be at least 2D
the generality of our findings as well as their relation to the(3D) for the transition to be smeared, which makes the phe-
Griffiths effects[14,29. The origins of Griffiths effects and ,omenon less likely to be observegs).
the smearing found here are very similar; both are caused by | conclusion, extended defects destroy the DP transition
rare large spatial regions that are locally in the orderegy smearing and lead to(@onuniversal exponential depen-
phase. The difference between them is a result of disordejence of the density and other quantities on the control pa-
correlations. For uncorrelated disorder, the rare regions argmeter. We suggest that this disorder-induced smearing may

Instead, they fluctuate slowly. In contrast, if the rare regiongeast some of the experiments.

are infinite in at least one dimension, a stronger effect oc-

curs: each rare region can independently develop a nonzero We acknowledge stimulating discussions with U. Tauber.
steady state density. This leads to a smearing of the globdlhis work was supported in part by the University of Mis-
transition. souri Research Board and by the NSF under Grant No.

The smearing mechanism found here relies only on th®MR-0339147.
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