5 research outputs found

    Identification of a component of Drosophila polar granules

    Get PDF
    Information necessary for the formation of pole cells, precursors of the germ line, is provided maternally and localized to the posterior pole of the Drosophila egg. The maternal origin and posterior localization of polar granules suggest that they may be associated with pole cell determinants. We have generated an antibody (Mab46F11) against polar granules. In oocytes and early embryos, the Mab46F11 antigen is sharply localized to the posterior embryonic pole. In pole cells, it becomes associated with nuclear bodies within, and nuage around, the nucleus. Immunoreactivity remains associated with cells of the germ line throughout the life cycle of both males and females. This antibody recognizes a 72-74 X 10^(3) Mr protein and is useful both as a pole lineage marker and in biochemical studies of polar granules

    Formation of neuronal pathways in the imaginal discs of Drosophila melanogaster

    No full text
    We have followed the formation of neuronal pathways in different imaginal discs of Drosophila. The pattern is highly reproducible for a given disc type but distinct for each type of discs: in leg discs, several neurons are present before metamorphosis and provide two major pathways that are joined by lateral neurons; in the wing and haltere discs, a few pairs of neurons appear after the onset of metamorphosis and pioneer the majority pathways; in antenna discs, no pioneers are detected before massive neuronal differentiation begins. The mechanisms used for axonal guidance seem common to all discs, and the differences between discs can be accounted for simply by differences in the arrangement and birth time of pioneer neurons. Different subsets of pioneer neurons are deleted by mutations such as scute and engrailed.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    The Desmin Mutation DES-c.735G>C Causes Severe Restrictive Cardiomyopathy by Inducing In-Frame Skipping of Exon-3

    No full text
    Brodehl A, Hain C, Flottmann F, et al. The Desmin Mutation DES-c.735G>C Causes Severe Restrictive Cardiomyopathy by Inducing In-Frame Skipping of Exon-3. Biomedicines. 2021;9(10): 1400.Currently, little is known about the genetic background of restrictive cardiomyopathy (RCM). Herein, we screened an index patient with RCM in combination with atrial fibrillation using a next generation sequencing (NGS) approach and identified the heterozygous mutation DES-c.735G>C. As DES-c.735G>C affects the last base pair of exon-3, it is unknown whether putative missense or splice site mutations are caused. Therefore, we applied nanopore amplicon sequencing revealing the expression of a transcript without exon-3 in the explanted myocardial tissue of the index patient. Western blot analysis verified this finding at the protein level. In addition, we performed cell culture experiments revealing an abnormal cytoplasmic aggregation of the truncated desmin form (p.D214-E245del) but not of the missense variant (p.E245D). In conclusion, we show that DES-c.735G>C causes a splicing defect leading to exon-3 skipping of the DES gene. DES-c.735G>C can be classified as a pathogenic mutation associated with RCM and atrial fibrillation. In the future, this finding might have relevance for the genetic understanding of similar cases
    corecore