26 research outputs found

    New molecular targets for the treatment of neovascular age-related macular degeneration

    Get PDF
    Age-related macular degeneration (AMD) is a progressive chronic disease that currently represents the leading cause of irreversible vision loss in the western world. Experimental and clinical evidence has demonstrated that vascular endothelial growth factor A (VEGF-A) plays an important role in promoting the choroidal neovascularization that characterizes the wet form of AMD. Intravitreal injection of anti- VEGF-A agents is the current treatment of choice for neovascular AMD (nAMD). These agents have brought about dramatic changes in the treatment of nAMD, but most patients require frequently repeated injections and regular long-term follow-up, with a significant percentage of them showing resistance to anti-VEGF-A drugs. Thus, the identification of additional therapies that could improve the treatment protocols is needed. There are numerous areas of investigation into new treatments, with increasing efforts being made to study drugs that address various targets along the angiogenic signaling cascade, or other pathways related to the onset of nAMD. The aim of the present review is to summarize and discuss promising new therapies and targets that have the potential to improve outcomes and to lengthen treatment durability, especially in patients with recalcitrant or recurrent forms of nAMD

    TGF-β concentrations and activity are down-regulated in the aqueous humor of patients with neovascular age-related macular degeneration

    Get PDF
    Controversy still exists regarding the role of the TGF-β in neovascular age-related macular degeneration (nAMD), a major cause of severe visual loss in the elderly in developed countries. Here, we measured the concentrations of active TGF-β1, TGF-β2, and TGF-β3 by ELISA in the aqueous humor of 20 patients affected by nAMD, who received 3 consecutive monthly intravitreal injections of anti-VEGF-A antibody. Samples were collected at baseline (before the first injection), month 1 (before the second injection), and month 2 (before the third injection). The same samples were used in a luciferase-based reporter assay to test the TGF-β pathway activation. Active TGF-β1 concentrations in the aqueous humor were below the minimum detectable dose. Active TGF-β2 concentrations were significantly lower at baseline and at month 1, compared to controls. No significant differences in active TGF-β3 concentration were found among the sample groups. Moreover, TGF-β pathway activation was significantly lower at baseline compared to controls. Our data corroborate an anti-angiogenic role for TGF-β2 in nAMD. This should be considered from the perspective of a therapy using TGF-β inhibitors

    Synthesis and evaluation of new Hsp90 inhibitors based on a 1,4,5-trisubstituted 1,2,3-triazole scaffold

    Get PDF
    Abstract: Ruthenium catalyzed 1,3-cycloaddition (click chemistry) of an azido moiety installed on dihydroxycumene scaffold with differently substituted aryl propiolates, gave a new family of 1,4,5-trisubstitued triazole carboxylic acid derivatives that showed high affinity towards Hsp90 associated with cell proliferation inhibition, both in nanomolar range. The 1,5 arrangement of the resorcinol, the aryl moieties, and the presence of an alkyl (secondary) amide in position 4 of the triazole ring, were essential to get high activity. Docking simulations suggested that the triazoles penetrate the Hsp90 ATP binding site. Some 1,4,5-trisubstitued triazole carboxamides induced dramatic depletion of the examined client proteins and a very strong increase in the expression levels of the chaperone Hsp70. In vitro metabolic stability and in vivo preliminary studies on selected compounds have shown promising results comparable to the potent Hsp90 inhibitor NVP-AUY922. One of them, (compound 18; SST0287CL1) was selected for further investigation as the most promising drug candidate

    Anti-cancer activity of dose-fractioned mPE +/- bevacizumab regimen is paralleled by immune-modulation in advanced squamous NSLC patients

    Get PDF
    Background: Results from the BEVA2007 trial, suggest that the metronomic chemotherapy regimen with dose-fractioned cisplatin and oral etoposide (mPE) +/- bevacizumab, a monoclonal antibody to the vascular endothelial growth factor (VEGF), shows anti-angiogenic and immunological effects and is a safe and active treatment for metastatic non-small cell lung cancer (mNSCLC) patients. We carried out a retrospective analysis aimed to evaluate the antitumor effects of this treatment in a subset of patients with squamous histology. Methods: Retrospective analysis was carried out in a subset of 31 patients with squamous histology enrolled in the study between September 2007 and September 2015. All of the patients received chemotherapy with cisplatin (30 mg/sqm, days 1-3q21) and oral etoposide (50 mg, days 1-15q21) (mPE) and 14 of them also received bevacizumab 5 mg/kg on the day 3q21 (mPEBev regimen). Results: This treatment showed a disease control rate of 71% with a mean progression free survival (PFS) and overall survival (OS) of 13.6 and 17 months respectively. After 4 treatment courses, 6 patients showing a remarkable tumor shrinkage, underwent to radical surgery, attaining a significant advantage in term of survival (P=0.048). Kaplan-Meier and log-rank test identified the longest survival in patients presenting low baseline levels in neutrophil-to-lymphocyte ratio (NLR) (P=0.05), interleukin (IL) 17A (P=0.036), regulatory-T-cells (Tregs) (P=0.020), and activated CD83+ dendritic cells (DCs) (P=0.03). Conclusions: These results suggest that the mPE +/- bevacizumab regimen is feasible and should be tested in comparative trials in advanced squamous-NSCLC (sqNSCLC). Moreover, its immune-biological effects strongly suggest the investigation in sequential combinations with immune check-point inhibitors

    Assessment of the Carcinogenicity of Carbon Nanotubes in the Respiratory System

    No full text
    In 2014, the International Agency for Research on Cancer (IARC) classified the first type of carbon nanotubes (CNTs) as possibly carcinogenic to humans, while in the case of other CNTs, it was not possible to ascertain their toxicity due to lack of evidence. Moreover, the physicochemical heterogeneity of this group of substances hamper any generalization on their toxicity. Here, we review the recent relevant toxicity studies produced after the IARC meeting in 2014 on an homogeneous group of CNTs, highlighting the molecular alterations that are relevant for the onset of mesothelioma. Methods: The literature was searched on PubMed and Web of Science for the period 2015–2020, using different combinations keywords. Only data on normal cells of the respiratory system after exposure to fully characterized CNTs for their physico-chemical characteristics were included. Recent studies indicate that CNTs induce a sustained inflammatory response, oxidative stress, fibrosis and histological alterations. The development of mesothelial hyperplasia, mesothelioma, and lungs tumors have been also described in vivo. The data support a strong inflammatory potential of CNTs, similar to that of asbestos, and provide evidence that CNTs exposure led to molecular alterations known to have a key role in mesothelioma onset. These evidences call for an urgent improvement of studies on exposed human populations and adequate systems for monitoring the health of workers exposed to this putative carcinogen

    Mesothelioma Malignancy and the Microenvironment: Molecular Mechanisms

    No full text
    Several studies have reported that cellular and soluble components of the tumor microenvironment (TME) play a key role in cancer-initiation and progression. Considering the relevance and the complexity of TME in cancer biology, recent research has focused on the investigation of the TME content, in terms of players and informational exchange. Understanding the crosstalk between tumor and non-tumor cells is crucial to design more beneficial anti-cancer therapeutic strategies. Malignant pleural mesothelioma (MPM) is a complex and heterogenous tumor mainly caused by asbestos exposure with few treatment options and low life expectancy after standard therapy. MPM leukocyte infiltration is rich in macrophages. Given the failure of macrophages to eliminate asbestos fibers, these immune cells accumulate in pleural cavity leading to the establishment of a unique inflammatory environment and to the malignant transformation of mesothelial cells. In this inflammatory landscape, stromal and immune cells play a driven role to support tumor development and progression via a bidirectional communication with tumor cells. Characterization of the MPM microenvironment (MPM-ME) may be useful to understand the complexity of mesothelioma biology, such as to identify new molecular druggable targets, with the aim to improve the outcome of the disease. In this review, we summarize the known evidence about the MPM-ME network, including its prognostic and therapeutic relevance

    MicroRNA Mediate Visfatin and Resistin Induction of Oxidative Stress in Human Osteoarthritic Synovial Fibroblasts Via NF-κB Pathway

    No full text
    Synovial membrane inflammation actively participate to structural damage during osteoarthritis (OA). Adipokines, miRNA, and oxidative stress contribute to synovitis and cartilage destruction in OA. We investigated the relationship between visfatin, resistin and miRNA in oxidative stress regulation, in human OA synovial fibroblasts. Cultured cells were treated with visfatin and resistin. After 24 h, we evaluated various pro-inflammatory cytokines, metalloproteinases (MMPs), type II collagen (Col2a1), miR-34a, miR-146a, miR-181a, antioxidant enzymes, and B-cell lymphoma (BCL)2 by qRT-PCR, apoptosis and mitochondrial superoxide production by cytometry, p50 nuclear factor (NF)-κB by immunofluorescence. Synoviocytes were transfected with miRNA inhibitors and oxidative stress evaluation after adipokines stimulus was performed. The implication of NF-κB pathway was assessed by the use of a NF-κB inhibitor (BAY-11-7082). Visfatin and resistin significantly up-regulated gene expression of interleukin (IL)-1β, IL-6, IL-17, tumor necrosis factor (TNF)-α, MMP-1, MMP-13 and reduced Col2a1. Furthermore, adipokines induced apoptosis and superoxide production, the transcriptional levels of BCL2, superoxide dismutase (SOD)-2, catalase (CAT), nuclear factor erythroid 2 like 2 (NRF2), miR-34a, miR-146a, and miR-181a. MiRNA inhibitors counteracted adipokines modulation of oxidative stress. Visfatin and resistin effects were suppressed by BAY-11-7082. Our data suggest that miRNA may represent possible mediators of oxidative stress induced by visfatin and resistin via NF-κB pathway in human OA synoviocytes

    Hydrostatic Pressure Regulates Oxidative Stress through microRNA in Human Osteoarthritic Chondrocytes

    No full text
    Hydrostatic pressure (HP) modulates chondrocytes metabolism, however, its ability to regulate oxidative stress and microRNAs (miRNA) has not been clarified. The aim of this study was to investigate the role of miR-34a, miR-146a, and miR-181a as possible mediators of HP effects on oxidative stress in human osteoarthritis (OA) chondrocytes. Chondrocytes were exposed to cyclic low HP (1–5 MPa) and continuous static HP (10 MPa) for 3~h. Metalloproteinases (MMPs), disintegrin and metalloproteinase with thrombospondin motif (ADAMTS)-5, type II collagen (Col2a1), miR-34a, miR-146a, miR-181a, antioxidant enzymes, and B-cell lymphoma 2 (BCL2) were evaluated by quantitative real-time polymerase chain reaction qRT-PCR, apoptosis and reactive oxygen species ROS production by cytometry, and β-catenin by immunofluorescence. The relationship among HP, the studied miRNA, and oxidative stress was assessed by transfection with miRNA specific inhibitors. Low cyclical HP significantly reduced apoptosis, the gene expression of MMP-13, ADAMTS5, miRNA, the production of superoxide anion, and mRNA levels of antioxidant enzymes. Conversely, an increased Col2a1 and BCL2 genes was observed. β-catenin protein expression was reduced in cells exposed to HP 1–5 MPa. Opposite results were obtained following continuous static HP application. Finally, miRNA silencing enhanced low HP and suppressed continuous HP-induced effects. Our data suggest miRNA as one of the mechanisms by which HP regulates chondrocyte metabolism and oxidative stress, via Wnt/β-catenin pathway

    Development of Resistance to the Atypical Retinoid, ST1926, in the Lung Carcinoma Cell Line H460 Is Associated with Reduced Formation of DNA Strand Breaks and a Defective DNA Damage Response

    Get PDF
    Atypical retinoids are potent inducers of apoptosis, but activation of the apoptotic pathway seems to be independent of retinoid receptors. Previous studies with a novel adamantyl retinoid, ST1926, have shown that apoptosis induction is associated with an early genotoxic stress. To better understand the relevance of these events, we have selected a subline of the H460 lung carcinoma cell line resistant to ST1926. Resistant cells exhibited cross-resistance to a related molecule, CD437, but not cross-resistance to agents with different mechanisms of action. In spite of a lack of defects in intracellular drug accumulation, induction of DNA strand breaks in resistant cells required exposure to a substantially higher concentration, which was consistent with the degree of resistance. At drug concentrations causing a similar antiproliferative effect (IC(80)) and a comparable extent of DNA lesions in sensitive and resistant cells, the apoptotic response was a delayed and less marked event in resistant cells, thus indicating a reduced susceptibility to apoptosis. In spite of recognition of DNA lesions in resistant cells, as supported by phosphorylation of p53 and histone H2AX, resistant cells exhibited no activation of the mitochondrial pathways of apoptosis. Following exposure to equitoxic drug concentrations, only sensitive cells exhibited a typical stress/DNA damage response, with activation of the S-phase checkpoint. The cellular resistance to ST1926 reflects alterations responsible for a reduced generation of DNA lesions and for an enhanced tolerance of the genotoxic stress, resulting in lack of activation of the intrinsic pathway of apoptosis. The defective DNA damage response, accompanied by a reduced susceptibility to apoptosis in resistant cells, provides further support to the involvement of genotoxic stress as a critical event in mediating apoptosis induction by ST1926
    corecore