57 research outputs found

    A novel "TAZ" gene mutation and mosaicism in a Polish family with Barth syndrome

    Get PDF
    Barth syndrome (BTHS) is an X‐linked recessive disease primarily affecting males. Clinically, the disease is characterized by hypertrophic or dilated cardiomyopathy, skeletal myopathy, chronic/cyclic neutropenia, 3‐methylglutaconic aciduria, growth retardation and respiratory chain dysfunction. It is caused by mutations in the TAZ gene coding for the tafazzin protein which is responsible for cardiolipin remodeling. In this work, we present a novel pathogenic TAZ mutation c.83T>A, p.Val28Glu, found in mosaic form in almost all female members of a Polish family. Sanger sequencing of DNA from peripheral blood and from epithelial cells showed female mosaicism in three generations. This appears to be a new mechanism of inheritance and further research is required in order to understand the mechanism of this mosaicism. We conclude that BTHS genetic testing should include two or more tissues for women that appear to be noncarriers when blood DNA is initially tested. The results of our study should not only be applicable to BTHS families, but also to families with other X‐linked diseases

    miRNA signature of urine extracellular vesicles shows the involvement of inflammatory and apoptotic processes in diabetic chronic kidney disease

    Get PDF
    Background: The aim of this study was to investigate the role of urine-derived extracellular vesicles (uEVs) in diabetic kidney disease (DKD) in patients diagnosed with type 2 diabetes mellitus (T2DM). Methods: UEVs were characterized by size distribution and microRNA content by next-generation small RNA sequencing and quantitative reverse transcription PCR. Results: A subset of sixteen miRNAs enriched in T2DM patients with DKD, including hsa-miR-514a-5p, hsa-miR‑451a, hsa-miR-126-3p, hsa-miR-214, or hsa-miR‑503 was identified. Eight miRNAs as hsa-miR-21-3p, hsa-miR-4792, hsa-miR‑375, hsa-miR-1268a, hsa-miR-501-5p, or hsa-miR-582 were downregulated. Prediction of potential target genes and pathway enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) confirmed possible functions related to cellular processes such as apoptosis, inflammation, and tissue remodeling, that promote diabetic complications, such as DKD. Among them, hsa-miR-375, hsa-miR-503, and hsa-miR-451a make important contribution. Additionally, downregulated hsa-miR-582-5p has not been reported so far in any diabetes-related pathways. Conclusions: This study revealed the most significant miRNAs in uEVs of patients with T2DM. However, as this is a bioinformatic prediction that we performed based on the putative targets of the identified miRNAs. Thus, further in vitro functional studies are needed to confirm our findings. Knowing the fact that EVs are crucial in transferring miRNAs, there is a great need toto discover their involvement in the pathomechanism of T2DM-related kidney disease

    Modulation of the human preadipocyte mitochondrial activity by beta-carotene

    Get PDF
    Increased ROS generation by the overload by metabolic substrates mitochondria paralleled by decrease of antioxidant activity are typical events found in metabolic syndrome and diabetes type 2. Metabolites of beta-carotene (BC) such as retinoic acid (RA), as well as low concentration of reactive oxygen species (ROS) modify the mitochondrial bioenergetic function. The aim of the study was to investigate the effect of beta-carotene on mitochondrial activity in human preadipocytes. BC used in concentrations, 10 or 30 µM, decreased mitochondrial membrane potential, inhibited mitochondrial respiration and decreased cellular ATP content. We conclude, that BC, the known antioxidant may decrease oxidative phosphorylation capacity of mitochondria

    The Influence of Pearlite Present in the Microstructure of GX120MnCr13 Cast Steel on Wear Resistance

    Get PDF
    The article presents the results of metallographic and tribological tests on GX120MnCr13 cast steel that was previously subjected to heat treatment (including solution treatment from 1100°C and isothermal holding at 250, 400, and 600°C for 100 hours). The temperatures of the isothermal holding process were selected in order to reflect the possible working conditions of the cast elements that can be made of this cast steel. Wear tests were carried out under dry friction conditions using the ball-on-disc method using a ZrO2 ball as a counter-sample. The tests were carried out with a load of 5 N. The influence of the long-term isothermal holding process on the microstructure of the tested cast steel was analysed by light and scanning microscopy; however, abrasion marks were also examined using a confocal microscope. Based on the tests conducted, it was found that in the microstructures of the sample after solution treatment and samples that were held in isothermal condition at 250 and 400°C, the grain boundary areas were enriched in Mn and Cr compared to the areas inside the grains. Pearlite appeared in the sample that was heated (or held in isothermal holding) at 600°C; its share reached 41.6%. The presence of pearlite in the austenitic matrix increased the hardness to 351.4 HV 10. The hardness of the remaining tested samples was within a range of 221.8–229.1 HV 10. Increasing the hardness of the tested cast steel directly resulted in a reduction in the degree of wear as well as the volume, area, and width of the abrasion marks. A microscopic analysis of the wear marks showed that the dominant process of the abrasive wear of the tested friction pair was the detachment and displacement of the tested material through the indentation as a result of the cyclical impact of the counter-sample

    Apoptosis-related gene expression in glioblastoma (LN-18) and medulloblastoma (Daoy) cell lines

    Get PDF
    The expression of apoptosis genes in a commercial pre-designed low-density array from Applied Biosystems was evaluated in two human brain cancer cell models, LN-18 and Daoy (HTB-186™) in comparison to the reference human primary endothelial cells under basic conditions. Analysis of the gene expression in the cancer cell lines compared to the normal control revealed features reflecting anti-apoptotic and inflammatory characteristics of the former. There was an overall downregulation of apoptosis-stimulating genes in both cancer cell lines, along with an upregulation of certain apoptosis inhibitors. A number of genes demonstrated statistically significant changes in their expressions, including BAX (BCL2-associated X protein); the CARD4/NLR family, CARD domain containing 4; CASP10 (caspase 10, apoptosis-related cysteine peptidase); DAP1 (death-associated protein kinase 1), and BIRC5 (baculoviral IAP repeat-containing 5). Anti-apoptotic potential in both cell lines was demonstrated by changes in the Bax:Bcl-2 ratio and downregulation of the APAF1 gene in LN18 cells. There was also significant downregulation of extrinsic signals and the TNF/FADD/inflammatory cascade, and upregulation of caspase inhibitors (IAPs). These results provided a novel molecular characterization of important human cancer cell lines, which might provide a useful research tool for investigating the experimental model of the CNS cell

    High fat mixed meal tolerance test leads to suppression of osteocalcin decrease in obese insulin resistant subjects compared to healthy adults

    Get PDF
    Nutrients influence bone turnover. Carboxylated osteocalcin (Gla-OC) participates in bone formation whereas its undercarboxylated form (Glu-OC) acts as a hormone in glucose metabolism. The aim of the study was to determine the responses of Gla-OC, Glu-OC, and total-OC (calculated as the sum of Gla-OC and Glu-OC) to a high fat mixed meal tolerance test (HFMTT) in non-obese (body mass index (BMI) < 30 kg/m2, n = 24) and obese subjects (30 < BMI < 40 kg/m2, n = 70) (both sexes, aged 25⁻65 years). Serum Gla-OC and Glu-OC were measured at baseline as well as at 2 and 6 h during a HFMTT by enzyme-linked immunosorbent assay (ELISA). Baseline Gla-OC, Glu-OC, and total-OC levels were lower in obese individuals compared to non-obese participants (p = 0.037, p = 0.016 and p = 0.005, respectively). The decrease in Gla-OC and total-OC, but not in Glu-OC, concentrations during the HFMTT was suppressed in obese, but not in non-obese controls (p < 0.05, p < 0.01, p = 0.08, respectively). Subjects with the highest homeostatic model assessment for insulin resistance (HOMA-IR) index values had a less pronounced decrease in total-OC compared to patients with values of HOMA-IR index in the 1st quartile (p < 0.05). Net incremental area under Gla-OC inversely correlated with adiponectin (rho = −0.35, p = 0.001). Increase in insulin sensitivity and adiponectin level in obese subjects could beneficially influence postprandial bone turnover expressed by osteocalcin concentration
    corecore