79 research outputs found

    Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2

    Get PDF
    During their biogenesis, 40S ribosomal subunit precursors are exported from the nucleus to the cytoplasm, where final maturation occurs. In this study, we show that the protein kinase human Rio2 (hRio2) is part of a late 40S preribosomal particle in human cells. Using a novel 40S biogenesis and export assay, we analyzed the contribution of hRio2 to late 40S maturation. Although hRio2 is not absolutely required for pre-40S export, deletion of its binding site for the export receptor CRM1 decelerated the kinetics of this process. Moreover, in the absence of hRio2, final cytoplasmic 40S maturation is blocked because the recycling of several trans-acting factors and cytoplasmic 18S-E precursor ribosomal RNA (rRNA [pre-rRNA]) processing are defective. Intriguingly, the physical presence of hRio2 but not its kinase activity is necessary for the release of hEnp1 from cytoplasmic 40S precursors. In contrast, hRio2 kinase activity is essential for the recycling of hDim2, hLtv1, and hNob1 as well as for 18S-E pre-rRNA processing. Thus, hRio2 is involved in late 40S maturation at several distinct steps

    A Protein Inventory of Human Ribosome Biogenesis Reveals an Essential Function of Exportin 5 in 60S Subunit Export

    Get PDF
    A systematic search for human ribosome biogenesis factors shows conservation of many aspects of eukaryotic ribosome synthesis with the well-studied process in yeast and identifies an export route of 60S subunits that is specific for higher eukaryotes

    Levels of CMV specific CD4 T cells are dynamic and correlate with CMV viremia after allogeneic stem cell transplantation.

    Get PDF
    Cytomegalovirus (CMV) infection is the most frequent viral complication in patients after allogeneic stem cell transplantation. As CMV replication is tightly controlled by the cellular arm of specific immunity, the kinetics of CMV-specific T cells in association with individual reactivation episodes were prospectively analyzed in 40 allogeneic transplant recipients in a routine clinical setting and evaluated as determinant of impaired CMV control. Antigen-specific CD4 and CD8 T cells were quantified directly from whole blood using intracellular cytokine staining after specific stimulation and MHC class I multimers, respectively. Highly dynamic intraindividual changes of CMV-specific CD4 T cells were observed in patients experiencing CMV viremia. Episodes of CMV reactivation were associated with a drop of CMV-specific CD4 T cells that re-increased after viral clearance (p<0.0001). Furthermore, levels of CMV-specific CD4 T cells at the onset of viremia inversely correlated with peak viral load thereafter (p = 0.02). In contrast, CMV-peptide specific CD8 T cells did not show any association with viremia (p = 0.82). Interestingly, therapeutic dosages of cyclosporine A and corticosteroids led to a dose-dependent reduction of CMV-specific T-cell functions, indicating a causal link between intensified immunosuppressive treatment and CMV reactivation. In conclusion, levels of CMV-specific CD4 T cells inversely correlate with reactivation episodes and may represent a valuable measure to individually guide antiviral therapy after stem cell transplantation

    Tandem affinity purification combined with inducible shRNA expression as a tool to study the maturation of macromolecular assemblies

    No full text
    Tandem affinity purification (TAP) is an efficient method for the purification and characterization of large macromolecular complexes. To elucidate the role of specific components of such complexes, it is important to address the question of how loss of a specific factor affects complex composition. Here, we introduce a method that combines TAP of large macromolecular assemblies with inducible shRNA-mediated protein depletion in human somatic cells. As a proof of principle, we have applied this method to the purification of human pre-ribosomal particles. Using inducible expression of ribosome assembly factors as bait proteins, different pre-40S particles could be isolated and characterized, revealing high conservation of the ribosome biogenesis pathway from yeast to human cells. Besides known ribosome maturation factors, C21orf70 was identified as a novel pre-40S component. By combining TAP of pre-40S particles with shRNA-mediated depletion of the pre-40S-associated protein kinase Rio2, we observed that increased levels of the nuclear HEAT-repeat protein Rrp12 are associated with 40S precursors in absence of Rio2. Further analyses revealed that Rrp12 is partially mislocalized to the cytoplasm and trapped on late 40S precursors upon loss of Rio2, and therefore fails to efficiently recycle to the nucleus. Thus, the combination of tandem affinity purification and shRNA induction provided further insights into late cytoplasmic 40S maturation steps, demonstrating the high potential of this method
    • …
    corecore