23 research outputs found

    The Serum Cell-Free microRNA Expression Profile in MCTD, SLE, SSc, and RA Patients

    No full text
    Mixed connective tissue disease (MCTD) is a rare disorder characterized by symptoms that overlap two or more Autoimmune Connective Tissue Diseases (ACTDs). The aim of this study was to determine whether miRNAs participating in the TLRs signaling pathway could serve as biomarkers differentiating MCTD or other ACTD entities from a healthy control group and between groups of patients. Although the selected miRNA expression level was not significantly different between MCTD and control, we observed that miR-126 distinguishes MCTD patients from all other ACTD groups. The expression level of miRNAs was significantly higher in the serum of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) patients compared to controls. The miR-145 and -181a levels distinguished RA from other ACDT patients. miR-155 was specific for SLE patients. MiR-132, miR-143, and miR-29a distinguished RA and SLE patients from the systemic sclerosis (SSc) group. Additionally, some clinical parameters were significantly related to the miRNA expression profile in the SLE group. SLE and RA are characterized by a specific serum expression profile of the microRNAs associated with the Toll-like receptors (TLRs) signaling pathway. The analysis showed that their level distinguishes these groups from the control and from other ACTD patients. The present study did not reveal a good biomarker for MCTD patients

    RORC2 Genetic Variants and Serum Levels in Patients with Rheumatoid Arthritis

    No full text
    Background: In the present study, we aimed to evaluate whether polymorphisms within the RORc2 gene are involved in the risk and severity of rheumatoid arthritis (RA). Methods: 591 RA patients and 341 healthy individuals were examined for RORc2 gene polymorphisms. Serum retinoic acid receptor-related orphan receptor C (RORc) levels were measured by enzyme-linked immunosorbent assay (ELISA). Results: The rs9826 A/G, rs12045886 T/C and rs9017 G/A RORc2 gene SNPs show no significant differences in the proportion of cases and control. Overall, rs9826 and rs9017 were in high linkage disequilibrium (LD) with D’ = 0.952 and r2 = 0.874, except rs9826 and rs12045886; and rs12045886 and rs9017 in weak LD. The genotype–phenotype analysis showed a significant association between RORc2 rs9826 A/G and rs9017 G/A single nucleotide polymorphisms (SNPs) and median of C-reactive protein (CRP). Serum RORc levels was higher in RA patients with rs9826AA, rs12045886TT and -TC, and rs9017AA genotypes compared to healthy subjects with the same genotypes (p = 0.02, p = 0.04 and p = 0.01, respectively). Moreover, the median of RORc protein level was higher in RA patients with number of swollen joints bigger then 3 (p = 0.04) and with Health Assessment Questionnaires (HAQ) score bigger then 1.5 (0.049). Conclusions: Current findings indicated that the RORc2 genetic polymorphism and the RORc2 protein level may be associated with severity of RA in the Polish population

    miR-10 and Its Negative Correlation with Serum IL-35 Concentration and Positive Correlation with STAT5a Expression in Patients with Rheumatoid Arthritis

    No full text
    Circulating free-cell miRNAs are increasingly important as potential non-invasive biomarkers due to the easy accessibility of clinical materials. Moreover, their epigenetic role may provide insight into the mechanisms of pathogenesis. Nevertheless, these aspects are mostly studied in the area of oncological diseases. Therefore, this research aimed to find the potential association of selected miRNAs in serum with the expression of Th17/Treg transcription factors and clinical features in RA patients. Accordingly, experiments was conducted on rheumatoid arthritis (RA), osteoarthritis (OA) and healthy subjects (HC). Analysis of miRNAs level in serum was performed using LNA miRNA PCR assays. mir-10 was detected only in RA patients. Furthermore, its expression was correlated with IL-35 serum concentration and the mRNA level of STAT5a in whole blood in RA. Additionally, a tendency of the raised level of miR-10 was noted in RA patients with high activity disease. miR-326 was significantly upregulated in RA patients with rheumatoid factor presence. In HC the correlation between miR-26 and IL-21 serum levels and expression of SMAD3 have been found. In OA patients, correlations between miR-126 and HIF1 expression and between miR-146 and RORc have been noted. The differential association of transcription factor expression with serum miRNA levels may be important in the diagnosis and progression of RA and OA

    <i>FLT-1</i> gene polymorphisms and protein expression profile in rheumatoid arthritis

    No full text
    <div><p>Objectives</p><p>Inflammation and angiogenesis are a significant element of pathogenesis in rheumatoid arthritis (RA). The FLT-1- triggering factor for production of proinflammatory cytokines-might contributes to inflammation in patients with RA. Association of the <i>FLT-1</i> polymorphisms with different “angiogenic diseases” suggests that it may be a novel genetic risk factor also for RA. The aim of the study was to identify <i>FLT-1</i> genetic variants and their possible association with sFLT-1 levels, susceptibility to and severity of RA.</p><p>Methods</p><p>The <i>FLT-1</i> gene polymorphisms were genotyped for 471 RA patients and 684 healthy individuals. Correlation analysis was performed with clinical parameters, cardiovascular disease (CVD) and anti-citrullinated peptide/protein antibody (ACPA) presence. The sFLT-1 serum levels were evaluated.</p><p>Results</p><p>The <i>FLT-1</i> gene polymorphisms showed no significant differences in the proportion of cases and controls. Furthermore, the <i>FLT-1</i> rs2296188 T/C polymorphism was associated with ACPA-positive RA. Overall, rs9943922 T/C and rs2296283 G/A are in almost completed linkage disequilibrium (LD) with D’ = 0.97 and r2 = 0.83. The <i>FLT-1</i> rs7324510 A allele has shown association with VAS score (p = 0.035), DAS-28 score (p = 0.013) and ExRA presence (p = 0.027). Moreover, other clinical parameters were also higher in RA patients with this allele. In addition, <i>FLT-1</i> genetic variants conferred higher sFLT-1 levels in RA patients compared to controls.</p><p>Conclusion</p><p><i>FLT-1</i> rs7324510 C/A variant may be a new genetic risk factor for severity of RA. Examined factor highly predispose to more severe disease activity as well as higher sFLT-1 levels in RA.</p></div

    Relationship between VEGF Gene Polymorphisms and Serum VEGF Protein Levels in Patients with Rheumatoid Arthritis

    No full text
    <div><p>Background</p><p>Rheumatoid arthritis (RA) is one of the chronic autoimmune diseases, with genetic and environmental predisposition, and synovial angiogenesis is considered to be a notable stage in its pathogenesis. Angiogenesis or vascular proliferation has been suggested to be a pivotal mechanism involved in both inflammation/immune activation and joint invasion and destruction. RA may be considered an “angiogenic disease” because it is associated with active tissue neovascularization. Vascular endothelial growth factor (VEGF) promotes vascular permeability, regulates angiogenesis, endothelial cell proliferation and migration, chemotaxis, and capillary hyper permeability and therefore is involved in the development of inflammation. VEGF is the most potent proangiogenic molecule promoting the angiogenic phenotype of RA and is upregulated in RA.</p><p>Objectives</p><p>The aim of the study was to identify functional VEGF variants and their possible association with VEGF expression, susceptibility to and severity of RA.</p><p>Methods</p><p>581 RA patients and of 341 healthy individuals were examined for -1154 A/G, -2578 A/C VEGF gene polymorphisms by PCR-RFLP method and for -634 G/C VEGF gene polymorphisms by TaqMan SNP genotyping assay. Serum VEGF levels in RA patients and controls were measured by ELISA.</p><p>Results</p><p>The -1154 A/G VEGF gene polymorphism under the codominant, recessive (AA+AG vs. GG) and dominant (AA vs. AG+GG) models were associated with RA (p = 0.0009; p = 0.004; p = 0.017, respectively). VEGF -2578 A/C revealed differences in the case-control distribution in codominant, recessive, dominant and overdominant models (all p<0.0001). Furthermore, the -634 G/C VEGF gene SNP was not correlated with susceptibility to RA in Polish population. The genotype-phenotype analysis showed significant association between the VEGF -1154 A/G and -634 G/C and mean value of the hemoglobin (all p = 0.05), additionally they relevated that the number of women with the polymorphic allele -2578 C was lower than the number of women with wild type allele -2578A (p = 0.006). Serum VEGF levels were significantly higher in RA patients than in control groups (both p = 0,0001).</p><p>Conclusion</p><p>Present findings indicated that VEGF genetic polymorphism as well as VEGF protein levels may be associated with the susceptibility to RA in the Polish population.</p></div
    corecore