97 research outputs found

    Chimeric antigen receptor-redirected T cells return to the bench

    Get PDF
    While the clinical progress of chimeric antigen receptor T cell (CAR-T) immunotherapy has garnered attention to the field, our understanding of the biology of these chimeric molecules is still emerging. Our aim within this review is to bring to light the mechanistic understanding of these multi-modular receptors and how these individual components confer particular properties to CAR-Ts. In addition, we will discuss extrinsic factors that can be manipulated to influence CAR-T performance such as choice of cellular population, culturing conditions and additional modifications that enhance their activity particularly in solid tumors. Finally, we will also consider the emerging toxicity associated with CAR-Ts. By breaking apart the CAR and examining the role of each piece, we can build a better functioning cellular vehicle for optimized treatment of cancer patients

    507. Chondroitin Sulfate Proteoglycan 4 (CSPG4)-Redirected T Cells Eliminate Glioblastoma-Derived Neurospheres

    Get PDF
    Adoptive therapy with chimeric antigen receptor-redirected T cells (CAR-Ts) remains challenging for the treatment of glioblastoma (GBM) because of the heterogeneous expression of targetable tumor antigens, which leads to the selection of antigen-loss variants. In addition, the emerging role of GBM-derived neurospheres (GBM-NS) as a critical cell subset in causing GBM recurrence highlights the need to eradicate these cells to achieve sustained responses. By exploiting a well-established culture system, we generated and expanded GBM-NS from 23 surgical samples, and tested them using flow cytometry for the expression of CSPG4, a membrane bound tumor antigen found to be overexpressed in GBM by mRNA profiling. We observed that 70% of GBM-NS displayed high expression of CSPG4 (from 71% to 99%), 17% moderate-high expression (from 51% to 70%), and 13% moderate-low expression (<50%). Based on these results, we hypothesized that CSPG4-specific CAR-Ts would represent a broadly applicable strategy for the treatment of GBM. We generated CSPG4. CAR-Ts, encoding the 4-1BB endodomain, from 6 healthy donors and tested them against 19 of the 23 generated GBM-NS that robustly grow in vitro. CSPG4.CAR-Ts efficiently eliminated all GBM-NS, with high to moderate-low CSPG4 expression, in co-culture experiments at E:T ratios ranging from 2:5 to 1:5 (0.2±0.5% and 0.6±0.9% residual GBM-NS, respectively). By contrast, GBM-NS continued to grow in the presence of control T cells (60.7±17.6% residual GBM-NS). CSPG4.CAR-Ts, but not control T cells, also rapidly proliferated in response to GBM-NS as evaluated by the CFSE assay. CSPG4. CAR-Ts showed a Th1 cytokine profile in response to GBM-NS, releasing significantly more IFN-Îł (3593.8±1718.1 pg/ml/2×10^5 cells) and IL-2 (258.8±153.3 pg/ml/2×10^5 cells) than control T cells (1.8±2.5 and 0.9±1.2 pg/ml/2×10^5 cells, respectively). For the in vivo experiments we compared CSPG4.CAR-Ts encoding CD28, 4-1BB, or CD28-4-1BB co-stimulatory endodomains. Two GBM-NS with moderate-low and high CSPG4 expression, respectively were selected and transduced to express the FFluciferase gene to monitor the tumor growth by in vivo bioluminescence imaging. Both GBM-NS and T cells were intracranially injected in 5 wks old female nude mice. CSPG4.CAR-Ts were efficient in controlling tumor growth of both moderate-low and high CSPG4-expressing GBM-NS. We observed an early eradication of the tumor mass in high-CSPG4 expressing GBM-NS, and a significant improved survival in both mice bearing high or moderate-low CSPG4-expressing GBM-NS. CAR-Ts encoding 4-1BB were significantly more efficient than those encoding CD28 or CD28-4-1BB in prolonging tumor free survival (p=0.04). Our data suggest that CSPG4 is an attractive target for CAR-Ts in GBM and that the strategy we have shown to be effective in mice has the potential to be translated to a clinical setting

    Inducible Caspase-9 Selectively Modulates the Toxicities of CD19-Specific Chimeric Antigen Receptor-Modified T Cells

    Get PDF
    Immunotherapy with T cells expressing the chimeric antigen receptor (CAR) specific for the CD19 antigen (CD19.CAR-Ts) is a very effective treatment in B cell lymphoid malignancies. However, B cell aplasia and cytokine release syndrome (CRS) secondary to the infusion of CD19.CAR-Ts remain significant drawbacks. The inclusion of safety switches into the vector encoding the CAR is seen as the safest method to terminate the effects of CD19.CAR-Ts in case of severe toxicities or after achieving long-term sustained remissions. By contrast, the complete elimination of CD19.CAR-Ts when CRS occurs may jeopardize clinical responses as CRS and antitumor activity seem to concur. We have demonstrated, in a humanized mouse model, that the inducible caspase-9 () safety switch can eliminate CD19.CAR-Ts in a dose-dependent manner, allowing either a selective containment of CD19.CAR-T expansion in case of CRS or complete deletion on demand granting normal B cell reconstitution

    The Emerging Role of CAR T Cell Therapy in Relapsed/Refractory Hodgkin Lymphoma

    Get PDF
    Treatment for Hodgkin lymphoma (HL) has evolved considerably from the time it was originally described in the 19th century with many patients now being cured with frontline therapy. Despite these advances, upwards of 10% of patients experience progressive disease after initial therapy with an even higher percentage relapsing. Until recently there had been limited therapeutic options for relapsed and/or refractory HL outside of highly intensive chemotherapy with stem cell rescue. Improved understanding of the pathophysiology of HL, coupled with the emergence of more targeted therapeutics, has reshaped how we view the treatment of relapsed/refractory HL and its prognosis. With this, there has been an increased focus on immunotherapies that can reprogram the immune system to better overcome the immunosuppressive milieu found in HL for improved cancer cell killing. In particular, chimeric antigen receptor (CAR) T cells are emerging as a valuable therapeutic tool in this area. Building on the success of antibody-drug conjugates directed against CD30, CAR T cells engineered to recognize the same antigen are now reaching patients. Though still in its infancy, CAR T therapy for relapsed/refractory HL has shown exceptional promise in early-stage clinical trials with the potential for durable responses even in patients who had progressed through multiple lines of prior therapy. Here we will review currently available data on the use of CAR T cells in HL, strategies to optimize their effectiveness, and how this therapy may fit into the treatment paradigm of HL going forward

    THEMIS-SHP1 Recruitment by 4-1BB Tunes LCK-Mediated Priming of Chimeric Antigen Receptor-Redirected T Cells

    Get PDF
    Chimeric antigen receptor (CAR) T cell costimulation mediated by CD28 and 4-1BB is essential for CAR-T cell-induced tumor regression. However, CD28 and 4-1BB differentially modulate kinetics, metabolism and persistence of CAR-T cells, and the mechanisms governing these differences are not fully understood. We found that LCK recruited into the synapse of CD28-encoding CAR by co-receptors causes antigen-independent CAR-CD3z phosphorylation and increased antigen-dependent T cell activation. In contrast, the synapse formed by 4-1BB-encoding CAR recruits the THEMIS-SHP1 phosphatase complex that attenuates CAR-CD3z phosphorylation. We further demonstrated that the CAR synapse can be engineered to recruit either LCK to enhance the kinetics of tumor killing of 4-1BB CAR-T cells or SHP1 to tune down cytokine release of CD28 CAR-T cells

    Treatment of solid organ transplant recipients with autologous Epstein Barr virus-specific cytotoxic T lymphocytes (CTLs)

    No full text
    We have investigated the in vivo safety, efficacy, and persistence of autologous Epstein Barr virus (EBV)-specific cytotoxic T lymphocytes (CTLs) for the treatment of solid organ transplant (SOT) recipients at high risk for EBV-associated posttransplantation lymphoproliferative disease (PTLD). EBV-CTLs generated from 35 patients expanded with normal kinetics contained both CD8 and CD4 lymphocytes and produced significant specific killing of autologous EBV-transformed B lymphoblastoid cell lines (LCLs). Twelve SOT recipients at high risk for PTLD, or with active disease, received autologous CTL infusions without toxicity. Real-time polymerase chain reaction (PCR) monitoring of EBV-DNA showed a transient increase in plasma EBV-DNA suggestive of lysis of EBV-infected cells, although there was no consistent decrease in virus load in peripheral-blood mononuclear cells. Interferon- enzyme-linked immunospot (ELISPOT) assay and tetramer analysis showed an increase in the frequency of EBV-responsive T cells, which returned to preinfusion levels after 2 to 6 months. None of the treated patients developed PTLD. One patient with liver PTLD showed a complete response, and one with ocular disease has had a partial response stable for over one year. These data are consistent with an expansion and persistence of adoptively transferred EBV-CTLs that is limited in the presence of continued immunosuppression but that nonetheless produces clinically useful antiviral activity

    Challenges of driving CD30-directed CAR-T cells to the clinic

    Get PDF
    Abstract Chimeric antigen receptor T (CAR-T) cells are a promising new treatment for patients with relapsed or refractory hematologic malignancies, including lymphoma. Given the success of CAR-T cells directed against CD19, new targets are being developed and tested, since not all lymphomas express CD19. CD30 is promising target as it is universally expressed in virtually all classical Hodgkin lymphomas, anaplastic large cell lymphomas, and in a proportion of other lymphoma types, including cutaneous T cell lymphomas and diffuse large B cell lymphomas. Preclinical studies with CD30-directed CAR-T cells support the feasibility of this approach. Recently, two clinical trials of CD30-directed CAR-T cells in relapsed/refractory CD30+ lymphomas, including Hodgkin lymphoma, have been reported with minimal toxicities noted and preliminary efficacy seen in a proportion of patients. However, improving the persistence and expansion of CAR-T cells is key to further enhancing the efficacy of this treatment approach. Future directions include optimizing the lymphodepletion regimen, enhancing migration to the tumor site, and combination with other immune regulators. Several ongoing and upcoming clinical trials of CD30-directed CAR-T cells are expected to further enhance this approach to treat patients with relapsed and refractory CD30+ lymphomas

    Management of patients with non-Hodgkin&rsquo;s lymphoma: focus on adoptive T-cell therapy

    Get PDF
    Non-Hodgkin’s lymphoma (NHL) represents a heterogeneous group of malignancies with high diversity in terms of biology, clinical responses, and prognosis. Standard therapy regimens produce a 5-year relative survival rate of only 69%, with the critical need to increase the treatment-success rate of this patient population presenting at diagnosis with a median age of 66 years and many comorbidities. The evidence that an impaired immune system favors the development of NHL has opened the stage for new therapeutics, and specifically for the adoptive transfer of ex vivo-expanded antigen-specific T-cells. In this review, we discuss how T-cells specific for viral-associated antigens, nonviral-associated antigens expressed by the tumor, T-cells redirected through the expression of chimeric antigen receptors, and transgenic T-cell receptors against tumor cells have been developed and used in clinical trials for the treatment of patients with NHLs

    Targeted delivery of adenoviral vectors by cytotoxic T cells

    No full text
    International audienceAbstract Effective targeting of vectors to tumor cells that have metastasized to multiple different tissue sites remains a major challenge for gene therapy. Tumor-specific cytotoxic T lymphocytes (CTLs) have been shown in animal models and in humans to be able to cross tissue barriers and traffic to tumor cells. However, their capacity to eliminate malignancy has been limited by tumor immune evasion strategies. We now use a model of Epstein-Barr virus–mediated malignancy to show that human CTLs themselves may be modified to release therapeutic vectors following engagement of their antigen-specific receptors and that these vectors will effectively transduce and destroy tumor targets. We generated EBV-specific CTLs that were transgenic for the adenoviral E1 gene under the control of the cell activation-dependent CD40 ligand (CD40L) promoter. Following transduction with E1-deficient adenoviral vectors, these CTLs produced infectious virus when exposed to HLA-matched EBV-expressing targets, but not on exposure to major histocompatibility complex (MHC)–mismatched or otherwise irrelevant cells. This approach provides a means of delivering oncolytic/therapeutic vectors not only to locally accessible macroscopic tumors as is presently the case, but also to disseminated metastatic disease, while avoiding the risks associated with systemic administration of large doses of adenoviral vectors
    • 

    corecore