29 research outputs found

    Lactic acid fermentation as a tool to enhance the antioxidant properties of <i>Myrtus communis</i> berries

    Get PDF
    Background: Myrtle (Myrtus communis L.) is a medicinal and aromatic plant belonging to Myrtaceae family, which is largely diffused in the Mediterranean areas and mainly cultivated in Tunisia and Italy. To the best of our knowledge, no studies have already considered the use of the lactic acid fermentation to enhance the functional features of M. communis. This study aimed at using a selected lactic acid bacterium for increasing the antioxidant features of myrtle berries, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. The antioxidant activity was preliminarily evaluated through in vitro assays, further confirmed through ex vivo analysis on murine fibroblasts, and the profile of phenol compounds was characterized. Results: Myrtle berries homogenate, containing yeast extract (0.4%, wt/vol), was fermented with Lactobacillus plantarum C2, previously selected from plant matrix. Chemically acidified homogenate, without bacterial inoculum and incubated under the same conditions, was used as the control. Compared to the control, fermented myrtle homogenate exhibited a marked antioxidant activity in vitro. The radical scavenging activity towards DPPH increased by 30%, and the inhibition of linoleic acid peroxidation was twice. The increased antioxidant activity was confirmed using Balb 3 T3 mouse fibroblasts, after inducing oxidative stress, and determining cell viability and radical scavenging activity through MTT and DCFH-DA assays, respectively. The lactic acid fermentation allowed increased concentrations of total phenols, flavonoids and anthocyanins, which were 5–10 times higher than those found for the non-fermented and chemically acidified control. As shown by HPLC analysis, the main increases were found for gallic and ellagic acids, and flavonols (myricetin and quercetin). The release of these antioxidant compounds would be strictly related to the esterase activities of L. plantarum. Conclusions: The lactic acid fermentation of myrtle berries is a suitable tool for novel applications as functional food dietary supplements or pharmaceutical preparations

    Lactic acid fermentation as a tool to enhance the antioxidant properties of Myrtus communis berries

    Get PDF
    Background: Myrtle (Myrtus communis L.) is a medicinal and aromatic plant belonging to Myrtaceae family, which is largely diffused in the Mediterranean areas and mainly cultivated in Tunisia and Italy. To the best of our knowledge, no studies have already considered the use of the lactic acid fermentation to enhance the functional features of M. communis. This study aimed at using a selected lactic acid bacterium for increasing the antioxidant features of myrtle berries, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. The antioxidant activity was preliminarily evaluated through in vitro assays, further confirmed through ex vivo analysis on murine fibroblasts, and the profile of phenol compounds was characterized. Results: Myrtle berries homogenate, containing yeast extract (0.4%, wt/vol), was fermented with Lactobacillus plantarum C2, previously selected from plant matrix. Chemically acidified homogenate, without bacterial inoculum and incubated under the same conditions, was used as the control. Compared to the control, fermented myrtle homogenate exhibited a marked antioxidant activity in vitro. The radical scavenging activity towards DPPH increased by 30%, and the inhibition of linoleic acid peroxidation was twice. The increased antioxidant activity was confirmed using Balb 3 T3 mouse fibroblasts, after inducing oxidative stress, and determining cell viability and radical scavenging activity through MTT and DCFH-DA assays, respectively. The lactic acid fermentation allowed increased concentrations of total phenols, flavonoids and anthocyanins, which were 5–10 times higher than those found for the non-fermented and chemically acidified control. As shown by HPLC analysis, the main increases were found for gallic and ellagic acids, and flavonols (myricetin and quercetin). The release of these antioxidant compounds would be strictly related to the esterase activities of L. plantarum. Conclusions: The lactic acid fermentation of myrtle berries is a suitable tool for novel applications as functional food dietary supplements or pharmaceutical preparations

    Lactic acid fermentation of pomegranate juice as a tool to improve antioxidant activity

    Get PDF
    An increasing consumer demand for pomegranate has been globally observed, mainly thanks to the scientific evidence related to its functional and health-promoting features. Pomegranate fruits from twenty accessions identified in Southeastern Italy were characterized according to morphological and chemical features. Juices extracted from pomegranate fruits were fermented with selected Lactobacillus plantarum PU1 and the antioxidant activity investigated. Whey was added to juices to promote the microbial growth. Fermentation led to the increase of the radical scavenging activity (up to 40%) and significant inhibition of the linoleic acid peroxidation. The three fermented juices showing the highest antioxidant activity, and the corresponding unfermented controls, were further characterized. In detail, the cytotoxicity and the protective role toward artificially induced oxidative stress were determined on murine fibroblasts Balb 3T3 through the determination of the viability and the intracellular ROS (reactive oxygen species) scavenging activity (RSA). RSA reached values of ca. 70% in fermented juices, being ca. 40% higher than the unfermented and control samples. Phenols compounds of the pomegranate juices obtained from accessions “Bitonto Piscina,” “Sanrà nero,” and “Wonderful (reference cultivar) were analyzed through ultrahigh pressure liquid chromatography coupled with mass spectrometry, showing that a marked increase (up to 60%) of the ellagitannins derivatives occurred during fermentation. Sensory analysis showed suitability of the fermented juices to be used as beverage and food ingredient

    Italian legumes : effect of sourdough fermentation on lunasin-like polypeptides

    Get PDF
    Background: There is an increasing interest toward the use of legumes in food industry, mainly due to the quality of their protein fraction. Many legumes are cultivated and consumed around the world, but few data is available regarding the chemical or technological characteristics, and especially on their suitability to be fermented. Nevertheless, sourdough fermentation with selected lactic acid bacteria has been recognized as the most efficient tool to improve some nutritional and functional properties. This study investigated the presence of lunasin-like polypeptides in nineteen traditional Italian legumes, exploiting the potential of the fermentation with selected lactic acid bacteria to increase the native concentration. An integrated approach based on chemical, immunological and ex vivo (human adenocarcinoma Caco-2 cell cultures) analyses was used to show the physiological potential of the lunasin-like polypeptides. Results: Italian legume varieties, belonging to Phaseulus vulgaris, Cicer arietinum, Lathyrus sativus, Lens culinaris and Pisum sativum species, were milled and flours were chemically characterized and subjected to sourdough fermentation with selected Lactobacillus plantarum C48 and Lactobacillus brevis AM7, expressing different peptidase activities. Extracts from legume doughs (unfermented) and sourdoughs were subjected to western blot analysis, using an anti-lunasin primary antibody. Despite the absence of lunasin, different immunoreactive polypeptide bands were found. The number and the intensity of lunasin-like polypeptides increased during sourdough fermentation, as the consequence of the proteolysis of the native proteins carried out by the selected lactic acid bacteria. A marked inhibitory effect on the proliferation of human adenocarcinoma Caco-2 cells was observed using extracts from legume sourdoughs. In particular, sourdoughs from Fagiolo di Lamon, Cece dell'Alta Valle di Misa, and Pisello riccio di Sannicola flours were the most active, showing a decrease of Caco-2 cells viability up to 70 %. The over-expression of Caco-2 filaggrin and involucrin genes was also induced. Nine lunasin-like polypeptides, having similarity to lunasin, were identified. Conclusions: The features of the sourdough fermented legume flours suggested the use for the manufacture of novel functional foods and/or pharmaceuticals preparations.Peer reviewe

    Exploitation of grape marc as functional substrate for lactic acid bacteria and bifidobacteria growth and enhanced antioxidant activity

    Get PDF
    This study aimed at using grape marc for the growth of lactic acid bacteria and bifidobacteria with the perspective of producing a functional ingredient having antioxidant activity. Lactobacillus plantarum 12A and PU1, Lactobacillus paracasei 14A, and Bifidobacterium breve 15A showed the ability to grow on grape marc (GM) based media. The highest bacterial cell density (&gt;9.0 CFU/g) was found in GM added of 1% of glucose (GMG). Compared to un-inoculated and incubated control fermented GMG showed a decrease of carbohydrates and citric acid together with an increase of lactic acid. The content of several free amino acids and phenol compounds differed between samples. Based on the survival under simulated gastro-intestinal conditions, GMG was a suitable carrier of lactic acid bacteria and bifidobacteria strains. Compared to the control, cell-free supernatant (CFS) of fermented GMG exhibited a marked antioxidant activity in vitro. The increased antioxidant activity was confirmed using Caco-2 cell line after inducing oxidative stress, and determining cell viability and radical scavenging activity through MTT and DCFH-DA assays, respectively. Supporting these founding, the SOD-2 gene expression of Caco-2 cells also showed a lowest pro-oxidant effect induced by the four CFS of GMG fermented by lactic acid bacteria and bifidobacteria

    Lactic acid fermentation as a tool to enhance the antioxidant properties of Myrtus communis berries

    Get PDF
    Background: Myrtle (Myrtus communis L.) is a medicinal and aromatic plant belonging to Myrtaceae family, which is largely diffused in the Mediterranean areas and mainly cultivated in Tunisia and Italy. To the best of our knowledge, no studies have already considered the use of the lactic acid fermentation to enhance the functional features of M. communis. This study aimed at using a selected lactic acid bacterium for increasing the antioxidant features of myrtle berries, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. The antioxidant activity was preliminarily evaluated through in vitro assays, further confirmed through ex vivo analysis on murine fibroblasts, and the profile of phenol compounds was characterized. Results: Myrtle berries homogenate, containing yeast extract (0.4%, wt/vol), was fermented with Lactobacillus plantarum C2, previously selected from plant matrix. Chemically acidified homogenate, without bacterial inoculum and incubated under the same conditions, was used as the control. Compared to the control, fermented myrtle homogenate exhibited a marked antioxidant activity in vitro. The radical scavenging activity towards DPPH increased by 30%, and the inhibition of linoleic acid peroxidation was twice. The increased antioxidant activity was confirmed using Balb 3 T3 mouse fibroblasts, after inducing oxidative stress, and determining cell viability and radical scavenging activity through MTT and DCFH-DA assays, respectively. The lactic acid fermentation allowed increased concentrations of total phenols, flavonoids and anthocyanins, which were 5–10 times higher than those found for the non-fermented and chemically acidified control. As shown by HPLC analysis, the main increases were found for gallic and ellagic acids, and flavonols (myricetin and quercetin). The release of these antioxidant compounds would be strictly related to the esterase activities of L. plantarum. Conclusions: The lactic acid fermentation of myrtle berries is a suitable tool for novel applications as functional food dietary supplements or pharmaceutical preparations

    Oxidative stress” and muscle aging: influence of age, sex, fiber composition and function

    No full text
    Aim of this research was to study human muscle aging and the influence of oxidative stress correlated with physiological factors (age, sex, fiber composition and function) by measuring the antioxidant enzymes activities: total and mitochondrial superoxide dismutase (total and MnSOD), catalase (CAT), glutathione peroxidase(GSHPx) the levels of glutathione and glutathione disulfide (GSH and GSSG) and redox index. We also measured the lipid peroxide amount. As about age-related changes, we studied 120 samples (18-91 year-old) and we noted the presence of a correlation between age and ROS-mediated damages. Futhermore, it seems that 65 years could be the age at which ROS-dependent damage becomes crucial and begins to show up. Our data about sex-dependent changes showed how males may be potentially more vulnerable to oxidative damage than females. Study about fiber composition in old group (65-90 year-old) reported that subjects with +40 % type II fibers not only have lipoperoxide levels lower but also detossifing system against superoxide anion more efficent than –40 % type II fibers group. We also study aging process in muscle with different functions (“active”: characterized by rapid and coordinate

    Evaluation of Tolerance and Trichological Efficacy of a Food Supplement in Men and Women with Telogen Effluvium-like Disorder

    No full text
    Hair thinning is a very common problem in dermatology, affecting both men and women, and can strongly impact the quality of life of subjects. In this view, therapies that aim to reduce the appearance of thinning by delaying, arresting, or reversing the course of hair thinning are highly desirable. A novel nutraceutical product (NS) containing active botanicals, a patented composition comprising rutin and polyunsaturated fatty acids (PUFAs), zinc, biotin, and ornithine, has been developed to improve hair growth in subjects with hair thinning. Sixty subjects with telogen effluvium-like hair loss were randomized 1:1 in two groups (NS vs. placebo) and treated for three months and evaluated at the baseline visit (T0), and after 15 days (T1) and one (T2), two (T3), and three (T4) months of treatment. Two follow-up visits one month (T5) and two months after the last assumption (T6) were also included in the protocol. Subjects were evaluated for the percentage of hair in the anagen phase, density of hair in the anagen phase (n/cm2), vellus hair (miniaturized, smaller, and thinner hair), and the entity of hair loss in the telogen phase (pull test). NS supplementation produced a statistically significant (p p p < 0.05) increase in tensile strength till T6 (vs. placebo). A higher percentage of subjects who took the NS noted a reduction in daily hair loss, an increase in brightness, and the presence of stronger hair. No side effects were reported. The present study confirms the clinical efficacy and safety of novel nutraceutical supplements in men and women with hair thinning, acting as a multi-targeted therapeutic approach to hair thinning due to TE-like phenomena
    corecore