12 research outputs found

    Stereotypical Chronic Lymphocytic Leukemia B-Cell Receptors Recognize Survival Promoting Antigens on Stromal Cells

    Get PDF
    Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world. Survival of CLL cells depends on their close contact with stromal cells in lymphatic tissues, bone marrow and blood. This microenvironmental regulation of CLL cell survival involves the stromal secretion of chemo- and cytokines as well as the expression of adhesion molecules. Since CLL survival may also be driven by antigenic stimulation through the B-cell antigen receptor (BCR), we explored the hypothesis that these processes may be linked to each other. We tested if stromal cells could serve as an antigen reservoir for CLL cells, thus promoting CLL cell survival by stimulation through the BCR. As a proof of principle, we found that two CLL BCRs with a common stereotyped heavy chain complementarity-determining region 3 (previously characterized as “subset 1”) recognize antigens highly expressed in stromal cells – vimentin and calreticulin. Both antigens are well-documented targets of autoantibodies in autoimmune disorders. We demonstrated that vimentin is displayed on the surface of viable stromal cells and that it is present and bound by the stereotyped CLL BCR in CLL-stroma co-culture supernatant. Blocking the vimentin antigen by recombinant soluble CLL BCR under CLL-stromal cell co-culture conditions reduces stroma-mediated anti-apoptotic effects by 20–45%. We therefore conclude that CLL BCR stimulation by stroma-derived antigens can contribute to the protective effect that the stroma exerts on CLL cells. This finding sheds a new light on the understanding of the pathobiology of this so far mostly incurable disease

    Secretion of an Endogenous Subtilisin by Pichia pastoris Strains GS115 and KM71 ▿

    No full text
    The methylotrophic yeast Pichia pastoris is widely used for the expression of heterologous enzymes. While the purity of the desired expression product is of major importance for many applications, we found that recombinant enzymes produced in methanol medium were contaminated by a 37-kDa endogenous yeast protease. This enzyme was completely inhibited by phenylmethanesulfonyl fluoride (PMSF) but not by 1,10-phenanthroline, EDTA, and pepstatin A, suggesting the nature of a serine protease. Its secretion was abolished in P. pastoris strains GS115 and KM71 by specific mutagenesis of a subtilisin gene (SUB2) but not by inactivation of the gene encoding vacuolar proteinase B (PRB). Bioinformatic comparisons of Sub2 protein with subtilisins from other fungal genomes and phylogenetic analyses indicated that this enzyme is not an orthologue of the vacuolar protease cerevisin generally present in yeasts but is more closely related to another putative subtilisin found in a small number of yeast genomes. During growth of P. pastoris, Sub2 was produced as a secreted enzyme at a concentration of 10 μg/ml of culture supernatant after overexpression of the full-length SUB2 gene. During fermentative production of recombinant enzymes in methanol medium, 1 ml of P. pastoris culture supernatant was found to contain approximately 3 ng of Sub2, while the enzyme was not detected during growth in a medium containing glycerol as a carbon source. The mutant strain GS115-sub2 was subsequently used as a host for the production of recombinant proteases without endogenous subtilisin contamination

    Sedolisins, a New Class of Secreted Proteases from Aspergillus fumigatus with Endoprotease or Tripeptidyl-Peptidase Activity at Acidic pHs

    No full text
    The secreted proteolytic activity of Aspergillus fumigatus is of potential importance as a virulence factor and in the industrial hydrolysis of protein sources. The A. fumigatus genome contains sequences that could encode a five-member gene family that produces proteases in the sedolisin family (MEROPS S53). Four putative secreted sedolisins with a predicted 17- to 20-amino-acid signal sequence were identified and termed SedA to SedD. SedA produced heterologously in Pichia pastoris was an acidic endoprotease. Heterologously produced SedB, SedC, and SedD were tripeptidyl-peptidases (TPP) with a common specificity for tripeptide-p-nitroanilide substrates at acidic pHs. Purified SedB hydrolyzed the peptide Ala-Pro-Gly-Asp-Arg-Ile-Tyr-Val-His-Pro-Phe to Arg-Pro-Gly, Asp-Arg-Ile, and Tyr-Val-His-Pro-Phe, thereby confirming TPP activity of the enzyme. SedB, SedC, and SedD were detected by Western blotting in culture supernatants of A. fumigatus grown in a medium containing hemoglobin as the sole nitrogen source. A degradation product of SedA also was observed. A search for genes encoding sedolisin homologues in other fungal genomes indicates that sedolisin gene families are widespread among filamentous ascomycetes
    corecore