30 research outputs found

    Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell-type specificity

    Get PDF
    Background: Although genome-wide association studies (GWAS) have identified hundreds of variants associated with a risk for autoimmune and immune-related disorders (AID), our understanding of the disease mechanisms is still limited. In particular, more than 90% of the risk variants lie in non-coding regions, and almost 10% of these map to long non-coding RNA transcripts (lncRNAs). lncRNAs are known to show more cell-type specificity than protein-coding genes. Methods: We aimed to characterize lncRNAs and protein-coding genes located in loci associated with nine AIDs which have been well-defined by Immunochip analysis and by transcriptome analysis across seven populations of peripheral blood leukocytes (granulocytes, monocytes, natural killer (NK) cells, B cells, memory T cells, naive CD4(+) and naive CD8(+) T cells) and four populations of cord blood-derived T-helper cells (precursor, primary, and polarized (Th1, Th2) T-helper cells). Results: We show that lncRNAs mapping to loci shared between AID are significantly enriched in immune cell types compared to lncRNAs from the whole genome (a <0.005). We were not able to prioritize single cell types relevant for specific diseases, but we observed five different cell types enriched (a <0.005) in five AID (NK cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, and psoriasis; memory T and CD8(+) T cells in juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, and rheumatoid arthritis; Th0 and Th2 cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, and rheumatoid arthritis). Furthermore, we show that co-expression analyses of lncRNAs and protein-coding genes can predict the signaling pathways in which these AID-associated lncRNAs are involved. Conclusions: The observed enrichment of lncRNA transcripts in AID loci implies lncRNAs play an important role in AID etiology and suggests that lncRNA genes should be studied in more detail to interpret GWAS findings correctly. The co-expression results strongly support a model in which the lncRNA and protein-coding genes function together in the same pathways

    Genome-wide Analysis of STAT3-Mediated Transcription during Early Human Th17 Cell Differentiation

    Get PDF
    The development of therapeutic strategies to combat immune-associated diseases requires the molecular mechanisms of human Th17 cell differentiation to be fully identified and understood. To investigate transcriptional control of Th17 cell differentiation, we used primary human CD4+ T cells in small interfering RNA (siRNA)-mediated gene silencing and chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-seq) to identify both the early direct and indirect targets of STAT3. The integrated dataset presented in this study confirms that STAT3 is critical for transcriptional regulation of early human Th17 cell differentiation. Additionally, we found that a number of SNPs from loci associated with immune-mediated disorders were located at sites where STAT3 binds to induce Th17 cell specification. Importantly, introduction of such SNPs alters STAT3 binding in DNA affinity precipitation assays. Overall, our study provides important insights for modulating Th17-mediated pathogenic immune responses in humans.</p

    Large Proteoglycan Complexes and Disturbed Collagen Architecture in the Corneal Extracellular Matrix of Mucopolysaccharidosis Type VII (Sly Syndrome)

    Get PDF
    Purpose. Deficiencies in enzymes involved in proteoglycan (PG) turnover underlie a number of rare mucopolysaccharidoses (MPS), investigations of which can considerably aid understanding of the roles of PGs in corneal matrix biology. Here, the authors analyze novel pathologic changes in MPS VII (Sly syndrome) to determine the nature of PG-collagen associations in stromal ultrastructure. Methods. Transmission electron microscopy and electron tomography were used to investigate PG-collagen architectures and interactions in a cornea obtained at keratoplasty from a 22-year-old man with MPS VII, which was caused by a compound heterozygous mutation in the GUSB gene. Results. Transmission electron microscopy showed atypical morphology of the epithelial basement membrane and Bowman's layer in MPS VII. Keratocytes were packed with cytoplasmic vacuoles containing abnormal glycosaminoglycan (GAG) material, and collagen fibrils were thinner than in normal cornea and varied considerably throughout anterior (14–32 nm), mid (13–42 nm), and posterior (17–39 nm) regions of the MPS VII stroma. PGs viewed in three dimensions were striking in appearance in that they were significantly larger than PGs in normal cornea and formed highly extended linkages with multiple collagen fibrils. Conclusions. Cellular changes in the MPS VII cornea resemble those in other MPS. However, the wide range of collagen fibril diameters throughout the stroma and the extensive matrix presence of supranormal-sized PG structures appear to be unique features of this disorder. The findings suggest that the accumulation of stromal chondroitin-, dermatan-, and heparan-sulfate glycosaminoglycans in the absence of β-glucuronidase-mediated degradation can modulate collagen fibrillogenesis

    Genetic variation in the non-coding genome:Involvement of micro-RNAs and long non-coding RNAs in disease

    Get PDF
    AbstractIt has been found that the majority of disease-associated genetic variants identified by genome-wide association studies are located outside of protein-coding regions, where they seem to affect regions that control transcription (promoters, enhancers) and non-coding RNAs that also can influence gene expression. In this review, we focus on two classes of non-coding RNAs that are currently a major focus of interest: micro-RNAs and long non-coding RNAs. We describe their biogenesis, suggested mechanism of action, and discuss how these non-coding RNAs might be affected by disease-associated genetic alterations. The discovery of these alterations has already contributed to a better understanding of the etiopathology of human diseases and yielded insight into the function of these non-coding RNAs. We also provide an overview of available databases, bioinformatics tools, and high-throughput techniques that can be used to study the mechanism of action of individual non-coding RNAs. This article is part of a Special Issue entitled: From Genome to Function

    The influence of a short-term gluten-free diet on the human gut microbiome

    Get PDF
    Background: A gluten-free diet (GFD) is the most commonly adopted special diet worldwide. It is an effective treatment for coeliac disease and is also often followed by individuals to alleviate gastrointestinal complaints. It is known there is an important link between diet and the gut microbiome, but it is largely unknown how a switch to a GFD affects the human gut microbiome. Methods: We studied changes in the gut microbiomes of 21 healthy volunteers who followed a GFD for four weeks. We collected nine stool samples from each participant: one at baseline, four during the GFD period, and four when they returned to their habitual diet (HD), making a total of 189 samples. We determined microbiome profiles using 16S rRNA sequencing and then processed the samples for taxonomic and imputed functional composition. Additionally, in all 189 samples, six gut health-related biomarkers were measured. Results: Inter-individual variation in the gut microbiota remained stable during this short-term GFD intervention. A number of taxon-specific differences were seen during the GFD: the most striking shift was seen for the family Veillonellaceae (class Clostridia), which was significantly reduced during the intervention (p = 2.81 × 10-05). Seven other taxa also showed significant changes; the majority of them are known to play a role in starch metabolism. We saw stronger differences in pathway activities: 21 predicted pathway activity scores showed significant association to the change in diet. We observed strong relations between the predicted activity of pathways and biomarker measurements. Conclusions: A GFD changes the gut microbiome composition and alters the activity of microbial pathways.Peer reviewe

    First experience of a hemophilia monitoring platform: florio HAEMO

    No full text
    Background: florio HAEMO is a new hemophilia treatment monitoring application consisting of a patient smartphone application (app) and a web-based dashboard for healthcare professionals, providing several novel features, including activity tracking, wearable connectivity, kids and caregiver mode, and real-time pharmacokinetic factor level estimation. ----- Objectives: To assess intuitiveness, ease-of-use, and patient preference of florio HAEMO in Central Europe using a cross-sectional survey. ----- Methods: This survey was conducted in six Central European countries between 9 December 2020 and 24 May 2021. The online questionnaire included 17 questions about overall satisfaction, ease-of-use, intuitiveness, and patient preference. Adults or children with hemophilia on regular prophylaxis and using the florio HAEMO app for a minimum of 1 week were invited to complete the online questionnaire by their treating physician. ----- Results: Sixty-six participants took part in the survey. The median duration for all respondents using the florio HAEMO app was 3 to 4 weeks. Overall, 89.4% of users reported being very satisfied or rather satisfied after using florio HAEMO. Of the 23 respondents who had switched from another hemophilia app, 87.0% indicated that they strongly preferred or preferred using florio HAEMO. Most florio HAEMO users reported that the app was very easy or rather easy to use (97.0%) and intuitive (94.0%). florio HAEMO had a positive impact on daily living, with 78.8% of users reporting that the app was very important or rather important to them. ----- Conclusions: This survey suggests that florio HAEMO is an easy-to-use and intuitive app to assist self-management of home prophylaxis

    Framework for distributed monitoring of services

    No full text
    Title: Framework for distributed monitoring of services Author: Lenka Skotáková Department: Department of Software Engineering Supervisor: Mgr. Martin DÄ›cký, Department of Distributed and Dependable Systems Supervisor's e-mail address: [email protected] Abstract: Monitoring of servers and its services enables early detection of problems.Distributed monitoring provides the advantage of load balancing between multiple nodes. Most of the tools providing distributed monitoring still retain the master node as a single point of failure. Distributed system working without a central node is more reliable. Redundancy of monitoring can be also introduced for further increase of reliability. Then it is appropriate to ensure that reports of failures do not repeat. This thesis presents a distributed system for monitoring of services, resistant to failure of nodes including a node that currently acts as a coordinator. Nodes automatically distribute tasks among themselves and found problems are collected and stored so that the notifications are not repeated. Keywords: distributed systems, distributed monitoring, network services, Invitation algorith
    corecore