21 research outputs found

    Subcellular Localization of Sprouty2 in Human Glioma Cells

    Get PDF
    Sprouty proteins act ubiquitously as signaling integrators and inhibitors of receptor tyrosine kinase (RTK) activated pathways. Among the four Sprouty isoforms, Sprouty2 is a key regulator of growth factor signaling in several neurological disorders. High protein levels correlate with reduced survival of glioma patients. We recently demonstrated that abrogating its function inhibits tumor growth by overstimulation of ERK and induction of DNA replication stress. The important role of Sprouty2 in the proliferation of malignant glioma cells prompted us to investigate its subcellular localization applying super-resolution fluorescence and immunoelectron microscopy. We found that cytoplasmic Sprouty2 is not homogenously distributed but localized to small spots (<100 nm) partly attached to vimentin filaments and co-localized with activated ERK. The protein is associated with early, late and recycling endosomes in response to but also independently of growth factor stimulation. The subcellular localization of Sprouty2 in all areas exhibiting strong RTK activities may reflect a protective response of glioma cells to limit excessive ERK activation and to prevent cellular senescence and apoptosis

    Signal Transduction Regulators in Axonal Regeneration

    No full text
    Intracellular signal transduction in response to growth factor receptor activation is a fundamental process during the regeneration of the nervous system. In this context, intracellular inhibitors of neuronal growth factor signaling have become of great interest in the recent years. Among them are the prominent signal transduction regulators Sprouty (SPRY) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN), which interfere with major signaling pathways such as extracellular signal-regulated kinase (ERK) or phosphoinositide 3-kinase (PI3K)/Akt in neurons and glial cells. Furthermore, SPRY and PTEN are themselves tightly regulated by ubiquitin ligases such as c-casitas b-lineage lymphoma (c-CBL) or neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4) and by different microRNAs (miRs) including miR-21 and miR-222. SPRY, PTEN and their intracellular regulators play an important role in the developing and the lesioned adult central and peripheral nervous system. This review will focus on the effects of SPRY and PTEN as well as their regulators in various experimental models of axonal regeneration in vitro and in vivo. Targeting these signal transduction regulators in the nervous system holds great promise for the treatment of neurological injuries in the future

    Inhibition of calpains fails to improve regeneration through a peripheral nerve conduit

    Get PDF
    Intramuscular injection of the calpain inhibitor leupeptin promotes peripheral nerve regeneration in primates (Badalamente et al., 1989 [13]), and direct positive effects of leupeptin on axon outgrowth were observed in vitro (Hausott et al., 2012 [12]). In this study, we applied leupeptin (2mg/ml) directly to collagen-filled nerve conduits in the rat sciatic nerve transection model. Analysis of myelinated axons and retrogradely labeled motoneurons as well as functional 'CatWalk' video analysis did not reveal significant differences between vehicle controls and leupeptin treated animals. Therefore, leupeptin does not improve nerve regeneration via protease inhibition in regrowing axons or in surrounding Schwann cells following a single application to a peripheral nerve conduit suggesting indirect effects on motor endplate integrity if applied systemically

    Pea3 transcription factor promotes neurite outgrowth

    Get PDF
    Pea3 subfamily of E-twenty six transcription factors consist of three major -exhibit branching morphogenesis, the function of Pea3 family in nervous system development and regeneration is only beginning to unfold. In this study, we provide evidence that Pea3 can directs neurite extension and axonal outgrowth in different model systems, and that Serine 90 is important for this function. We have also identified neurofilament-L and neurofilament-M as two putative novel targets for Pea3.Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK)Brain Research Society BAD-Lundbeck Project AwardTurkish Academy of Scienc

    Endocytosis and Transport of Growth Factor Receptors in Peripheral Axon Regeneration: Novel Lessons from Neurons Expressing Lysine‐Deficient FGF Receptor Type 1 in vitro

    No full text
    In the course of peripheral nerve regeneration, axons encounter different extracellular growth factors secreted by non‐neuronal cells at the injury site and retrogradely transported after binding to neuronal membrane receptor tyrosine kinases. The present study reviews the role of receptor transport in peripheral axon outgrowth and provides novel data on trafficking of fibroblast growth factor receptor type 1 (FGFR1). Differences in receptor transport are determined by different numbers of lysine residues acting as ubiquitination sites in the intracellular receptor domain. We previously demonstrated that overexpression of mutant FGFR1‐25R (25 out of 29 intracellular lysines replaced with arginine) results in enhanced receptor recycling as compared to wild‐type FGFR1 followed by strong stimulation of elongative axon growth in vitro . Here, the effects of lysine‐deficient FGFR1 (FGFR1‐29R lacking all 29 cytoplasmic lysine residues) or of only 15 lysine mutations (FGFR1‐15R) on axon outgrowth and concomitant changes in signal pathway activation were investigated by immunocytochemistry and morphometry of cultured primary neurons. Overexpression of FGFR1‐15R in adult sensory neurons resulted in enhanced receptor recycling, which was accompanied by increased axon elongation without stimulating axon branching. By contrast, FGFR1‐29R was neither endocytosed nor axon outgrowth affected. Although overexpression of FGFR1‐15R or FGFR1‐25Ra strongly promoted elongation, we did not detect increased signal pathway activation (ERK, AKT, PLC, or STAT3) in neurons expressing mutant FGFR1 as compared with wild‐type neurons raising the possibility that other signaling pathways or signaling independent mechanisms may be involved in the axon outgrowth effects of recycled FGF receptors. Anat Rec, 302:1268–1275, 2019. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists

    Neurotoxicity of lidocaine involves specific activation of the p38 mitogen-activated protein kinase, but not extracellular signal-regulated or c-jun N-terminal kinases, and is mediated by arachidonic acid metabolites

    No full text
    Pharmacologic inhibition of the p38 mitogen-activated protein kinase (MAPK) leads to a reduction in lidocaine neurotoxicity in vitro and in vivo. The current study investigated in vitro the hypotheses that lidocaine neurotoxicity is specific for dorsal root ganglion cells of different size or phenotype, involves time-dependent and specific activation of the p38 MAPK, that p38 MAPK inhibitors are only effective if applied with local anesthetic, and that p38 MAPK activation triggers activation of lipoxygenase pathways. The authors used primary sensory neuron cultures and pheochromocytoma cell line cultures to detect time-dependent activation of the p38 MAPK or related pathways such as extracellular signal-regulated kinases and c-jun N-terminal kinases. Cells were divided by size or by immunoreactivity for calcitonin gene-related peptide or isolectin B4, indicative of nociceptive phenotype. The authors also investigated whether arachidonic acid pathways represent a downstream effector of the p38 MAPK in local anesthetic-induced neurotoxicity. All types of dorsal root ganglion cells were subject to neurotoxic effects of lidocaine, which were mediated by specific activation of the p38 MAPK but not extracellular signal-regulated kinases or c-jun N-terminal kinases. Neuroprotective efficacy of p38 MAPK inhibitors declined significantly when administered more than 1 h after lidocaine exposure. Activation of p38 MAPK preceded activation of arachidonic acid pathways. Neurotoxicity of lidocaine, specific activation of p38 MAPK, and neuroprotective effects of a p38 MAPK inhibitor were further confirmed in pheochromocytoma cell line cultures. Specific and time-dependent activation of the p38 MAPK is involved in lidocaine-induced neurotoxicity, most likely followed by activation of lipoxygenase pathway

    The neurotoxic effects of amitriptyline are mediated by apoptosis and are effectively blocked by inhibition of caspase activity

    No full text
    Oral tricyclic antidepressants, widely used as adjuncts in the treatment of chronic pain, block sodium channels in vitro and nerve conduction in vivo. However, toxicity of amitriptyline has been observed after neural application. We therefore investigated the mechanism and possible prevention of amitriptyline neurotoxicity. To assess dose-dependent neurotoxicity of amitriptyline, we incubated neuron cultures from adult rat dorsal root ganglia with amitriptyline and quantified neuronal survival. Additionally, we investigated accepted markers of apoptosis (mitochondrial membrane potential, cytosolic cytochrome c, and activated caspase-3) and co-incubated amitriptyline with an inhibitor of caspase activity, z-vad-fmk, to assess the effect on cell survival. We found a dose-dependent neurotoxic effect of amitriptyline. Neurons incubated with amitriptyline exhibited loss of mitochondrial membrane potential, release of cytochrome c into the cytoplasm, and activation of caspase-3. Co-incubation with z-vad-fmk substantially improved neuronal survival in culture. In conclusion, amitriptyline-induced neurotoxicity is mediated by apoptosis and is attenuated by inhibition of caspase activity, suggesting that inhibition of apoptotic pathways may be efficient at alleviating local anesthetic-induced neurotoxicity. In vivo studies will have to corroborate whether the co-injection of anti-apoptotic drugs with local anesthetics decreases neurotoxic side effect

    Role of tartrate-resistant acid phosphatase (TRAP) in long bone development

    No full text
    Tartrate resistant acid phosphatase (TRAP) was shown to be critical for skeleton development, and TRAP deficiency leads to a reduced resorptive activity during endochondral ossification resulting in an osteopetrotic phenotype and shortened long bones in adult mice. A proper longitudinal growth depends on a timely, well-coordinated vascularization and formation of the secondary ossification center (SOC) of the long bones epiphysis. Our results demonstrate that TRAP is not essential for the formation of the epiphyseal vascular network. Therefore, in wild type (Wt) controls as well as TRAP deficient (TRAP(−/−)) mutants vascularised cartilage canals are present from postnatal day (P) five. However, in the epiphysis of the TRAP(−/−) mice cartilage mineralization, formation of the marrow cavity and the SOC occur prematurely compared with the controls. In the mutant mice the entire growth plate is widened due to an expansion of the hypertrophic zone. This is not seen in younger animals but first detected at week (W) three and during further development. Moreover, an enhanced number of thickened trabeculae, indicative of the osteopetrotic phenotype, are observed in the metaphysis beginning with W three. Epiphyseal excavation was proposed as an important function of TRAP, and we examined whether TRAP deficiency affects this process. We therefore evaluated the marrow cavity volume (MCV) and the epiphyseal volume (EV) and computed the MCV to EV ratio (MCV/EV). We investigated developmental stages until W 12. Our results indicate that both epiphyseal excavation and establishment of the SOC are hardly impaired in the knockouts. Furthermore, no differences in the morphology of the epiphyseal bone trabeculae and remodeling of the articular cartilage layers are noted between Wt and TRAP(−/−) mice. We conclude that in long bones, TRAP is critical for the development of the growth plate and the metaphysis but apparently not for the epiphyseal vascularization, excavation, and establishment of the SOC
    corecore