50 research outputs found

    Autologous Platelet Rich Plasma (Platelet Gel): An Appropriate Intervention for Salvaging Cardiac Myocytes Under Oxidative Stress After Myocardial Infarction

    Get PDF
    Background: The prompt restoration of blood flow (reperfusion) to the ischemic myocardium after an acute myocardial infarction is critical to the survival of non damaged heart tissue. However, reperfusion is responsible for additional myocardial damage. Our objective was to investigate the role of autologous platelet rich plasma or platelet gel prepared using nanosecond pulsed electric fields (nsPEFs) in improving left ventricular mechanical function after ischemic reperfusion. Methods: The hearts of nine adult female New Zealand White rabbits were perfused using the Langendorff model. The hearts were exposed to global ischemia for 30 min and reperfused for 60 min. The hearts were injected with 600 μl of platelet gel supernatant prepared using nsPEF or platelet gel supernatant prepared using bovine thrombin or with bovine serum albumin (BSA) which served as our control. HUV-EC cells or H9c2 were used in vitro to determine the effect of platelet gel on ROS formation and mitochondrial depolarization using flow cytometry. Metalloproteinase’s and their inhibitors were assessed using western blot analysis. HPLC was used to identify the presence of endogenously secreted antioxidants in the platelet gel. Results: Platelet gel improved left ventricular mechanical function of the heart, reduced ROS formation and reduced mitochondrial depolarization. Platelet gel also decreased MMP-2 and increased TIMP-1. Catalase and superoxide dismutase were preserved at greater concentrations in the platelet gel made using nsPEFs than in the platelet gel made with bovine thrombin. Conclusion: Platelet gel is cardioprotective to non- ischemic reperfused cardiac tissue after acute myocardial infarction and reperfusion

    Nanosecond Pulse Electric Field Activated-Platelet Rich Plasma Enhances the Return of Blood Flow to Large and Ischemic Wounds in a Rabbit Model

    Get PDF
    Platelet-rich plasma is a therapeutic strategy used for accelerating wound healing of a wide range of tissues through the release of platelet growth factors. Here, we describe a nonchemical, safe method for preparing platelet-rich plasma using nanosecond-pulsed electric fields (nsPEFs) and investigated the effect of this platelet-rich plasma on reperfusion of blood in large skin flap or ischemic hind limb wounds in New Zealand White rabbits. Laser Doppler images of blood flow to the dorsal surface of skin flap wounds or to ischemic hind limb wounds were obtained from wounds treated with 0.9% saline or nanosecond-pulsed electric field prepared platelet-rich plasma (nsPRP). Reperfusion in the skin flap wounds was greater in the nsPRP-treated wounds than in the wounds treated with saline on postoperative days 3 (P \u3c 0.001) and 21 (P \u3c 0.03). Reperfusion in the ischemic hind-limb treated with nsPRP was greater than in the saline-treated limb on post-operative Day 3 (P \u3c 0.001), post-operative week 1 (P \u3c 0.025) and post-operative week 4 (P \u3c 0.015). In the hind limb ischemic tissue, the number of endothelial cells, collagen, and cells containing vascular endothelial growth factor (VEGF) was greater in the nsPRP-treated tissue. These results demonstrate that nsPRP improves blood flow in large surgical skin wounds and in ischemic wounds

    Applications of Wavelet Transforms in Biomedical Optoacoustics

    Get PDF
    We discuss the utility of wavelet transform methods in signal processing in general, and in particular, demonstrate the technique in optoacoustic applications. In several optoacoustic experiments with different samples, we have successfully enhanced the signal to noise ratios. Wavelet transforms optimize resolution by utilizing a tailored, variable time-window in different frequency regions. The technique\u27s great advantage lies in the fact that the wavelet transform adds some redundancy to the original signal, and some desired features can be enhanced in the transformed space. In addition, proper choice of the basis set allows a sparse representation of the signal. Therefore, even when some components are suppressed in the transformed space, the signal itself can maintain its fidelity. This technique has great potential in biomedical optoacoustics, such as medical image processing and signal denoising. We use the wavelet transform technique to resolve acoustic echoes in the time-dilation space. White noise was removed by the wavelet shrinkage method. This processing was used to analyze several experimental results. These include optoacoustic measurements in solid samples as well as in biological tissues

    Nanosecond Pulsed Platelet-Rich Plasma (nsPRP) Improves Mechanical and Electrial Cardiac Function Following Myocardial Reperfusion Injury

    Get PDF
    Ischemia and reperfusion (I/R) of the heart is associated with biochemical and ionic changes that result in cardiac contractile and electrical dysfunction. In rabbits, platelet-rich plasma activated using nanosecond pulsed electric fields (nsPRP) has been shown to improve left ventricular pumping. Here, we demonstrate that nsPRP causes a similar improvement in mouse left ventricular function. We also show that nsPRP injection recovers electrical activity even before reperfusion begins. To uncover the mechanism of nsPRP action, we studied whether the enhanced left ventricular function in nsPRP rabbit and mouse hearts was associated with increased expression of heat-shock proteins and altered mitochondrial function under conditions of oxidative stress. Mouse hearts underwent 30 min of global ischemia and 1 h of reperfusion in situ. Rabbit hearts underwent 30 min of ischemia in vivo and were reperfused for 14 days. Hearts treated with nsPRP expressed significantly higher levels of Hsp27 and Hsp70 compared to hearts treated with vehicle. Also, pretreatment of cultured H9c2 cells with nsPRP significantly enhanced the spare respiratory capacity (SRC) also referred to as respiratory reserve capacity and ATP production in response to the uncoupler FCCP. These results suggest a cardioprotective effect of nsPRP on the ischemic heart during reperfusion

    Electroporation-Mediated Gene Transfer Directly to the Swine Heart

    Get PDF
    In vivo gene transfer to the ischemic heart via electroporation holds promise as a potential therapeutic approach for the treatment of heart disease. In the current study, we investigated the use of in vivo electroporation for gene transfer using three different penetrating electrodes and one non-penetrating electrode. The hearts of adult male swine were exposed through a sternotomy. Eight electric pulses synchronized to the rising phase of the R wave of the electrocardiogram were administered at varying pulse widths and field strengths following an injection of either a plasmid encoding luciferase or one encoding green fluorescent protein. Four sites on the anterior wall of the left ventricle were treated. Animals were killed 48 h after injection and electroporation and gene expression was determined. Results were compared with sites in the heart that received plasmid injection but no electric pulses or were not treated. Gene expression was higher in all electroporated sites when compared with injection only sites demonstrating the robustness of this approach. Our results provide evidence that in vivo electroporation can be a safe and effective non-viral method for delivering genes to the heart, in vivo

    Vascular Endothelial Growth Factor-A Gene Electrotransfer Promotes Angiogenesis in a Porcine Model of Cardiac Ischemia

    Get PDF
    This study aimed to assess safety and therapeutic potential of gene electrotransfer (GET) as a method for delivery of plasmid encoding vascular endothelial growth factor A (VEGF-A) to ischemic myocardium in a porcine model. Myocardial ischemia was induced by surgically occluding the left anterior descending coronary artery in swine. GET following plasmid encoding VEGF-A injection was performed at four sites in the ischemic region. Control groups either received injections of the plasmid without electrotransfer or injections of the saline vehicle. Animals were monitored for 7 weeks and the hearts were evaluated for angiogenesis, myocardial infarct size and left ventricular contractility. Arteriograms suggest growth of new arteries as early as 2 weeks after treatment in electrotransfer animals. There is a significant reduction of infarct area and left ventricular contractility is improved in GET-treated group compared with controls. There was no significant difference in mortality of animals treated with GET of plasmid encoding VEGF-A from the control groups. Gene delivery of plasmid encoding VEGF-A to ischemic myocardium in a porcine model can be accomplished safely with potential for myocardial repair and regeneration

    Donor Platelet Plasma Components Inactivate Sensitive and Multidrug Resistant Acinetobacter Baumannii Isolates

    Get PDF
    Acinetobacter baumannii is an environmentally resilient healthcare-associated opportunistic pathogen responsible for infections at many body sites. In the last 10 years, clinical strains resistant to many or all commonly used antibiotics have emerged globally. With few antimicrobial agents in the pharmaceutical pipeline, new and alternative agents are essential. Platelets secrete a large number of proteins, including proteins with antimicrobial activity. In a previous study, we demonstrated that donor platelet supernatants and plasma significantly inhibited the growth of a reference strain of A. baumannii in broth and on skin. This inhibition appeared to be unrelated to the platelet activation state. In this study, we demonstrate that this growth inhibition extends to clinical multidrug resistant isolates. We also demonstrate that there is no relationship between this activity and selected platelet-derived antimicrobial proteins. Instead, the donor plasma components complement and alpha-2 macroglobulin are implicated

    3,4-Methylenedioxymethamphetamine Activates Nuclear Factor- κB, Increases Intracellular Calcium, and Modulates Gene Transcription in Rat Heart Cells

    Get PDF
    3,4-Methylenedioxymethamphetamine (MDMA) is an illicit psychoactive drug that has gained immense popularity among teenagers and young adults. The cardiovascular toxicological consequences of abusing this compound have not been fully characterized. The present study utilized a transient transfection/dual luciferase genetic reporter assay, fluorescence confocal microscopy, and gene expression macroarray technology to determine nuclear factor-κB (NF-κB) activity, intracellular calcium balance, mitochondrial depolarization, and gene transcription profiles, respectively, in cultured rat striated cardiac myocytes (H9c2) exposed to MDMA. At concentrations of 1×10−3 M and 1×10−2 M, MDMA significantly enhanced NF-κB reporter activity compared with 0 M (medium only) control. This response was mitigated by cotransfection with IκB for 1×10−3 M but not 1×10−2 M MDMA. MDMA significantly increased intracellular calcium at concentrations of 1×10−3 M and 1×10−2 M and caused mitochondrial depolarization at 1×10−2 M. MDMA increased the transcription of genes that are considered to be biomarkers in cardiovascular disease and genes that respond to toxic indults. Selected gene activation was verified via temperature-gradient RT-PCR conducted with annealing temperatures ranging from 50°C to 65°C. Collectively, these results suggest that MDMA may be toxic to the heart through its ability to activate the myocardial NF-κB response, disrupt cytosolic calcium and mitochondrial homeostasis, and alter gene transcription

    Gene Electro Transfer of Plasmid Encoding Vascular Endothelial Growth Factor for Enhanced Expression and Perfusion in the Ischemic Swine Heart

    Get PDF
    Myocardial ischemia can damage heart muscle and reduce the heart\u27s pumping efficiency. This study used an ischemic swine heart model to investigate the potential for gene electro transfer of a plasmid encoding vascular endothelial growth factor for improving perfusion and, thus, for reducing cardiomyopathy following acute coronary syndrome. Plasmid expression was significantly greater in gene electro transfer treated tissue compared to injection of plasmid encoding vascular endothelial growth factor alone. Higher gene expression was also seen in ischemic versus non-ischemic groups with parameters 20 Volts (

    Bioelectric Effects of Intense Nanosecond Pulses

    Get PDF
    Electrical models for biological cells predict that reducing the duration of applied electrical pulses to values below the charging time of the outer cell membrane (which is on the order of 100 ns for mammalian cells) causes a strong increase in the probability of electric field interactions with intracellular structures due to displacement currents. For electric field amplitudes exceeding MV/m, such pulses are also expected to allow access to the cell interior through conduction currents flowing through the permeabilized plasma membrane. In both cases, limiting the duration of the electrical pulses to nanoseconds ensures only nonthermal interactions of the electric field with subcellular structures. This intracellular access allows the manipulation of cell functions. Experimental studies, in which human cells were exposed to pulsed electric fields of up to 300 kY/cm amplitude with durations as short as 3 ns, have confirmed this hypothesis and have shown that it is possible to selectively alter the behavior and/or survival of cells. Observed nanosecond pulsed effects at moderate electric fields include intracellular release of calcium and enhanced gene expression, which could have long term implications on cell behavior and function. At increased electric fields, the application of nanosecond pulses induces a type of programmed cell death, apoptosis, in biological cells. Cell survival studies with 10 ns pulses have shown that the viability of the cells scales inversely with the electrical energy density, which is similar to the ‘dose’ effect caused by ionizing radiation. On the other hand, there is experimental evidence that, for pulses of varying durations, the onset of a range of observed biological effects is determined by the electrical charge that is transferred to the cell membrane during pulsing. This leads to an empirical similarity law for nanosecond pulse effects, with the product of electric field intensity, pulse duration, and the square root of the number of pulses as the similarity parameter. The similarity law allows one not only to predict cell viability based on pulse parameters, but has also been shown to be applicable for inducing platelet aggregation, an effect which is triggered by internal calcium release. Applications for nanosecond pulse effects cover a wide range: from a rather simple use as preventing biofouling in cooling water systems, to advanced medical applications, such as gene therapy and tumor treatment. Results of this continuing research are leading to the development of wound healing and skin cancer treatments, which are discussed in some detail
    corecore