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Applications of wavelet transforms in biomedical optoacoustics 

Zibiao Wei*3, Shujun Yang3, Amin Dharamsi3, Barbara Hargraveb 

aDepartment of Electrical and Computer Engineering 

bDepartment of Biological Science, Old Dominion University, Norfolk, VA 23529 

ABSTRACT 

We discuss the utility of wavelet transform methods in signal processing in general, and in particular, demonstrate the 
technique in optoacoustic applications. In several optoacoustic experiments with different samples, we have successfully 
enhanced the signal to noise ratios. Wavelet transforms optimize resolution by utilizing a tailored, variable time-window in 
different frequency regions. The technique's great advantage lies in the fact that the wavelet transform adds some redundancy 
to the original signal, and some desired features can be enhanced in the transformed space. In addition, proper choice of the 
basis set allows a sparse representation of the signal. Therefore, even when some components are suppressed in the 
transformed space, the signal itself can maintain its fidelity. This technique has great potential in biomedical optoacoustics, 
such as medical image processing and signal denoising. We use the wavelet transform technique to resolve acoustic echoes in 
the time-dilation space (equivalent to the time-frequency space). White noise was removed by the wavelet shrinkage method. 
This processing was used to analyze several experimental results. These include optoacoustic measurements in solid samples 
as well as in biological tissues. 

Key words: Optoacoustics, biomedicine, wavelet transform, and wavelet shrinkage. 

1. INTRODUCTION 

Photoacoustics (PA) or optoacoustics (OA) is the generation of acoustic waves by the conversion of incident photons to 
phonons. The most common mechanism of OA generation is the thermal elastic effect in which the absorbed photons are 
converted into randomized thermal phonons, followed by length changes in the absorption region. These strains generate 
stresses that set up propagating acoustic signals. Optoacoustic techniques are used in a variety of applications, including non­
intrusive diagnostics of materials. In addition, recent developments allow applications in the biomedical area. While 
ultrasound imaging has been used for a long time in the medical profession, the availability of pulsed lasers in a large part of 
the visible and infrared part of the spectrum, has opened the possibility of new applications. Coupled with the fact that there 
is often a possibility of relatively wide tunability, pulsed lasers have begun to play an important role in advances of 
optoacoustics in biomedical applications. 

In all applications of optoacoustic techniques, including those in the biomedical field, s1gnal processing plays a critical role in 
the efficacy of the method employed. In this paper, we present results of optoacoustic experiments performed on several 
materials, including tissues, with an emphasis on the techniques of signal processing. It is shown that a careful analysis of the 
results, using the new technique of wavelet analysis allows one to extract information about the target from the resulting 
optoacoustic signals, in a convenient manner. The method allows real-time rapid measurements to be made. When fully 
developed, the technique would be non-invasive and extremely sensitive. The apparatus is compact, lightweight and 
inexpensive. 

A brief survey of discrete Fourier transform as well as wavelet transform method is given first, followed by a description of 
the experimental technique. Experimental results are accompanied by signal analyses, and a discussion of the applications is 
given. 

* Correspondence: Email: wei@ece.odu.edu; Telephone: 757 683 4499 
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2. A BRIEF SURVEY OF FOURIER AND WAVELET TRANSFORM TECHNIQUES 

The Fourier transform is a well-known and widely used technique. With the advent of digital computers, discrete 
formulations have gained widespread use. One particularly useful version is the short time Fourier transform (STFT) 
technique. The idea of STFT is to frame the complete signal into pieces by utilizing a time window. The Fourier transform is 
applied to each such time window. The STFT is suitable for yielding the time and frequency domain information of a non­
stationary signal. 

The wavelet transform has two features that often make it more useful than the short time Fourier transform. First, in wavelet 
analysis, large windows are used to look at gross features, and small windows are used for one to look at finer features. The 
selection of the window size is performed automatically without the user's intervention. Second, the basis function set used in 
a wavelet transform can have a variety of forms as long as these basis functions meet certain mathematical requirements. The 
choice of the basis function is really determined by the data to be represented and the application. If the best wavelets are 
adapted to the data, or the coefficients are truncated below a threshold, the data can be sparsely represented. This sparse 
coding makes wavelets an excellent tool in the field of data compression and signal denoising. 

Next, the short time Fourier transform is briefly described. Then we introduce the wavelet transform and its varying time­
frequency window. 

In STFT, a time-localization window ¢( t - b) can be used to segment the signal, and then the Fourier transform of the short 
time signal is taken. Here, b is the sliding parameter because it determines temporal location of the window. The STFT can 
be described by: 
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(G¢J)(b,c;) = [: f(t)e-J.crrp(t - b)dt (time-localization) 

- _iC.h 
= _e_·_ rx j(w)ejh'"r/J'(w - s)dw (frequency-localization), 

2tr L 

(1) 

where f is the signal, b and r; are used to localize the time and frequency respectively, the carat represents the Fourier 
transform of the appropriate function, and the star denotes complex conjugation. 

It is desired to have a wide time-window to analyze low frequencies thoroughly and a narrow window to locate high 
frequencies more precisely. Unfortunately, STFT does not have such automatic zoom-in and zoom-out capability. On the 
other hand, the wavelet transform has this capability. 

The wavelet transform can be defined as: 
I r~ . , t - b 

(W,, /)( b, a)= , J / (l)lf (~-)dt ' 
-va -x a 

(2) 

where !j/(t) is the basic wavelet, b is a translation parameter that represents a shift in time, a (a > 0) is the dilation 

parameter representing a frequency shift, ( w ,, I )( b , a ) is the wavelet transform coefficient indexed by b and a. The basic 

wavelet f//(l) must meet certain conditions, namely f//(t) , If 2 f//(l) and t f//(t) must be in L 2 and ,P-(0) = 0. 

The scale parameter a determines the width of the time and frequency windows. The width of the time window + f// ( tl) is 
-va a 

2a~ , where 11,,, the width of the basic wavelet. It can be shown that the width of the frequency window is 2 11+. , while 
W r a ~ 

11: is the width of ',If, the Fourier transform of the basic wavelet. To map a to an exact frequency, one may consider 

a ➔ r; = !:_, for some c > 0. 
a 

(3) 
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The constant c is called a calibration constant in frequency units. It is dependent on the wavelet basis, and can be obtained by 
applying the wavelet transform to a sinusoidal signal with a known frequency. 

Now we can see the differences of the STFT and the wavelet transform. While the widths of the time and frequency windows 
of a STFT transform are rigid, for a wavelet transform the value of a decreases when it locates a wider frequency window and 
a narrower time window, and vice versa. At the same time, the product of the widths of the time-window and the frequency­
window remains constant and obeys the condition 

(4) 

Eq. (2) actually defines an integral wavelet transform (IWT) or continuous wavelet transform (CWT). The CWT coefficients 
can be obtained in a discrete formulation as the following equation: 1 

Wlf'(b,a) = (5tl 112 f 1x;,,l//·[(b'-b)5t], (5) 
a ) ;,•=o a 

where x is the time sequence with N samples, ot is the sampling period and b and b' are the indexes. 

The CWT is often used for applications, such as time-frequency localization, because of its resolution and the redundancy 
that it introduces. However, the amount of computation is large. To overcome this difficulty, a discrete wavelet transform 

(DWT) can be used. This is obtained by evaluating the time sequence at the position b = k I 2 i with binary dilation a == 2 · 1 , 

where j is an integer. It can also be conveniently calculated by utilizing quadrature filters ( a pair of complementary low-pass 
and high-pass filters) and down-sampling technique (up-sampling for the reconstruction). 2 The number ofDWT coefficients 
is the same as the number of the time samplings, but the DWT algorithm is generally much faster. 

In most practical applications, the DWT has a large number of coefficients that are zero or small in value if the wavelet basis 
set is properly chosen. Therefore, a signal can be sparsely represented by it's DWT by ignoring these small or zero 
coefficients. When necessary, then, the time signal can be reconstructed without any substantial loss in fidelity by padding 
zeros to the transformed sequence for the purposes of the inverse DWT. This technique has been widely used for data or 
image compression. 

3. APPLICATIONS OF WAVELET TRANSFORM IN BIOMEDICAL OPTOACOUSTIC SIGNAL 
PROCESSING 

3.1. Experimental Arrangement 

In our experiment, a pulsed laser beam irradiated the front surface of the sample and a piezoelectric transducer picked up the 
OA signal at the back. Several samples were used, including materials such as PVC and tissue samples. 

The tissue samples were very soft, and a direct contact between the tissue and the transducer results in a distortion of the 
tissue and the poor reproducibility of the OA experiments. This difficulty can be overcome by using a solid buffer to conduct 
the OA signal from the tissue to the transducer. 

Based on the above considerations, we designed a container to hold the tissue sample (Figure 1 ). The dimension of the 
container, which was made out of aluminum, was 1.25"xl.25"x0.4". The tissue sample was immersed in isotonic saline that 
was in the container. The thickness of the bottom section of the container was about 0.5mm, corresponding to a round trip 
acoustic delay about l 60ns. Although the multi-reflected acoustic signal within the aluminum wall superimposes onto the OA 
signal (in microsecond scale) generated by the tissue, one is able to observe the main profile of the signal, since the 
interference is relatively small. The interference can be avoided if the aluminum wall is thick enough; however, this 
introduces the additional problems, such as acoustic signal attenuation and diffraction. 

The samples used in our experiments were muscle tissues taken from a rabbit. The muscle tissue itself appears to be 
transparent to the eye. However, it has thin connective tissue layers on both surfaces. These connective tissues are white but 
show differences amongst themselves. For example, one layer, labeled C 1 appears lighter (Figure 1. (a)), while the other 

visibly distinct layer (Figure 1. (b )), is labeled the c, layer. 
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The 0/\ signals that we obsen ·ed were gem:ra ted hy th<.:se t,ni connecti,T tissues. because they absorbed the pump encrgy 

before the li ght reached the musc k tissue . In our expernnents. the ( !aver generated a larger 0/\ signal than the ( ·. !aver 

did. 
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(a) (h) 

h !! ure I The alu111111u111 cont;rn1n and th e t1ssuL· sa111pk : 1al C ! J;J\n 011 top. tb) C: !aver Pl1 top . 

3.2. Wavelet Transform of OA Signals 

One of the sources we used was the pass1vat1on li ght from an exc imer laser. The ,,·ave length of the passi,·a t1on li ght is 

773 nm. with a pulsewidth of ahout I 0ns. The encrgy per pulse "as approx imately I m.l . ThL· li ght pulse was focused onto the 

ttssue sample . Due to the strong sca ttenng property of the ti ssue and the high cncrgv of the passnation light . some of th e 

incident lt ght was sca ttered by the sample. re fl ected hy the sidewa ll of the containcr and ahsorhed hy the hottom \\·,ill. .-\11 

extra 0/\ signal is hence generated hy the aluminum bottom ,val!. T he detected s ignal 1s the combination of the OA pul se 

generated in the ti ssue. the 0/\ pulse gene rated m th e alummum " ·all toge ther " ·ith their eehoes . ThL'SL' 1,,0 ditfrrL' llt types of 

signal s can be identified by the difference of the arrl\a l t1111 L· . In hgurc 2 (al. pulse:\ 1s generated hy the<": connectiH· la,Tr 

and pulse 13 is its first <.:chu. Pulse I ( no t displayed in h gure 2 ta)) 1s the 0:\ pulse ge nerated hy the scatte red li g ht onto the 

a luminum bottom . Since it takes a \Try short time tabout ~0ns) to arn vc at the transducer. thi s pulse 1s buncd in the RF no ise 

from the discharge of the exc imer laser . In thi s \\Ork . ,,c do 11 o t l!SL' this pulse. smcc tts echoes (pulse 2 and 3) can be clearly 

seen. 

To illustrate that pulse /\.. B and pulse 2. -~ are generated by different mechani sm s. we apply the contmuous wavelet 

transform to the combined s ignal. In the time-freq uency space ( Figure 2 (b)l. these two types pulses arc separated not only in 

time. hut also in frt:qu ency. The pulse ge nerated in th e aluminum and its echoes ha\'C higher frequencies. 

3. 3. Signal Denoising By WaHlct Shrinkage 

Signal denoising is one of many successful applica tions of "a,·clct transform. The principle of dcnoi smg by \\·a, e let 

transform will he described . The impro , ·ed signal to no1 SL' r;.itit1 ohtamcd by applying\\ a\'elet shrmkJgc is illustra ted below . 

l\o ise ex ists in all rea l measurements. and the s ignal to noi se ra tw presents a lirrnt to the precis ion of any measurement. In 

our 0/\ experiment w here a repeatab le pulsed laser 1s used. a com -en ient and highl y e ffect1n· way to 111111im1ze the effects of 

th<.: random noise is to take multiple measurement s and obtam an a\'crage from all the acquired signals. Howc\'cr. this method 

1s slow. especially when the lase r operates at a km rcpc tit10n rate Therefore. tt is often not suitable for real -tune· appl1cat1ons . 

We show that the wavelet shrinkage method can be used , ·c1s cffccti\'ely in such s ituat10ns . 
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Figure 2. The OA signal obtained with the tissue sample and its continuous wavelet transform: (a) the OA signal that is a combination of 
pulses generated by the tissue and the aluminum container and their echoes; (b) the continuous wavelet transform of the above signal. A 
dilation level L corresponds to a dilation parameter b=2u4 . The dilation axis is equivalent to the frequency axis but in the opposite direction. 
Hence a small L represents a high frequency. 

The process of removing noise by applying a threshold to the wavelet transform coefficients has been summarized by 
Donoho, who named this method wavelet shrinkage.3 Assume that the noisy signal y has n samples, i.e., 
Y, = f (t,) + az,, i = l, ... ,n ; here f (t,) is the signal and zi is a white noise with standard deviation a-. First, one obtains the 

wavelet coefficients of the noisy data (the noisy signal are preconditioned and normalized to Fn ). Then one applies 
thresholding to the noisy wavelet coefficients. All coefficients whose absolute values are less than the threshold 
t = -J21og(n)u I Fn are set to zero. 

There are two ways to deal with the coefficients whose absolute values are larger than or equal to the threshold t. For soft­
thresholding, the threshold t is subtracted from each absolute value; while for hard-thresholding, these coefficients keep their 
original values. Finally, one reconstructs the signal using the inverse wavelet transform with the shrunk wavelet coefficients, 
producing the estimated (less noisy or noiseless) f(t). In the process, forward and inverse discrete wavelet transforms are 
used for the purpose of simple and fast computation. 

For most practical useful signals, only a few discrete wavelet transform coefficients are significant while the rest coefficients 
are zero or insignificant, since almost all the signals have limited bandwidth. White noise spreads out over all DWT 
coefficients with small amplitude. This is because the noise has a limited energy content but a wide band spectrum. 
Therefore, the DWT of a contaminated signal shows several coefficients standing out from the rest of the small coefficients. 
By setting all insignificant coefficients to zero the wavelet shrinkage can effectively suppress the noise and still keep the 
signal's fidelity. 
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3.3.1. An experiment to illustrate the efficacy of denoising. 

An experiment utilizing a pulsed nitrogen laser irradiating a PVC sample is discussed, in order to illustrate the method of 
wavelet shrinkage described above. 

The wavelength of the nitrogen laser is 337nm, and the pulsewidth of the laser is about lOns. The energy per pulse is 

about 50 µJ . The laser pulse was incident on the front side of the PVC sample, and the detector was attached to the back of 
the sample. As expected, the signal is a series of echoes, together with RF noise from the gaseous discharge driving 
electronics of the Nitrogen laser. A large fraction of the random noise in the signal from a single shot can be effectively 
removed by a digital scope operating at average mode (at level 256). The averaged signal is used as a reference to be 
compared with the result from wavelet shrinkage denoising. 

Figure 3 shows the denoising process by the wavelet shrinkage method. The noisy signal is plotted in Figure 3(a). It contains 
512 samples. The DWT of the noisy signal is plotted in Figure 3(d). The DWT also contains 512 coefficients. Note that in 
this plot, the vertical axis is the amplitude of the coefficients, and all coefficients are combined and plotted along the horizon 
axis by both time and frequency in a way described below. The axis is non-uniformly divided into 9 segments. From left to 
right, each segment contains 2, 2, 4, 8, ... , 256 coefficients. Each segment covers the whole time range, which means that the 
time sampling rate doubles from one segment to its right neighbor. All coefficients within a segment have the same 
frequency, and the frequency increases with the power of two segment by segment from left to right. 
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Figure 3. The signal before and after denoising: (a) raw signal; (b) signal denoised by soft thresholding; (c) signal denoised by hard 
thresholding; (d)-(e) corresponding DWT coefficients to (a)-(c). The threshold for both denoising is set to be 1.5. 
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In order to use the wavelet shrinkage method, one needs to determine the threshold. For most practical signals, the variance is 
unknown. Therefore, one has to use an empirical threshold often determined by the visual effect of the output signal. Figure 
3( d) shows that the DWT of the noisy signal is also noisy, but all significant coefficients appear at the low frequency region. 
It is quite safe to assume that all nonzero coefficients in the second half region (between indexes 257 and 512, which is the 
highest frequency region) are due to the noise and thus can be shrunk to zero. This is because for our experiment (and this is 
true for many other applications), the signal is over sampled over the Shannon sampling limit. Therefore, at least all DWT 
coefficients in this region should be zero. For the best visual effect, the threshold can be set to the maximum magnitude of the 
noisy coefficients in the second half region. In Figure 3, the threshold has been set to 1.5 for both soft and hard thresholding. 
Both results are visually noiseless. However, if the threshold is set too high, some useful information may also be removed 
from the signal and errors will be introduced in the result. To reduce the risk of losing useful information, the wavelet basis 
set that most resemble to the main feature of the time signal needs to be used to perform the DWT. By using the optimized 
wavelet, the signal can be transformed into less number of DWT coefficients but with higher amplitudes. For this treatment 
shown in Figure 3, the Coilet-3 wavelet basis was used. 

The three results, namely the averaged signal, the one obtained by soft-thresholding and the one by hard-thresholding are 
superimposed in one plot Figure 4. From this figure, we draw the following conclusions. First, both thresholding methods are 
able to effectively remove noise and keep the fidelity of the signal, especially in that the signal pulses are not broadened. 
Second, the result from hard-thresholding maintains the signal amplitude while that from soft-thresholding decreases a little 
bit in the amplitude. Third, there is a slight distortion of the results from the wavelet shrinkage methods (by the threshold t 
=1.5). Therefore, as expected there is a tradeoffbetween removing noise and preserving fidelity of the signal. 
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Figure 4. Superimposing the denoising results by three methods: averaging, wavelet soft denoising and wavelet hard denoising. 

There are two conventional ways for denoising signals. The first method is the linear smoothing. It slides a window along 
the time axis. The average of all samples within this window is used as an estimate for the signal at the center of the window. 
If the time window is too narrow, it cannot remove too many noises. If the window is too wide, it leads to the distortion of the 
signal. The second method is denoising by filtering. It cannot remove noise within the passband of the used filter. The linear 
smoothing and the filtering methods can only partially remove the noises. They have difficulties to remove the noise whose 
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frequency contents fall into the real signal spectrum. The wavelet shrinkage can remove noise while the recovered signal 
remains its fidelity. 

The wavelet shrinkage method is powerful when the noise is white. If the noise is not white, high amplitude wavelet 
coefficients appear in the transform space. Then the fixed threshold is not reasonable, and a dynamic threshold is effective if 
the characteristics of the noise are known. There is a tradeoff between removing noise and maintaining fidelity while 
selecting the threshold for wavelet shrinkage. We have proposed a hybrid method, which combines wavelet shrinkage and the 
conventional denoising techniques. Our results have showed that this hybrid method has better performance for our 
applications. 

3.3.2. Denoising of signals used in the spectral ratio technique 

Wavelet shrinkage is an effective way to denoise OA signals. The process described above has been demonstrated (with the 
presentation of the results for PVC) to be a useful way to enhance the quality of the data acquired. Here we present some 
results, obtained by using the same technique, for tissue samples. 

We have developed a spectral ratio method for determining the optical absorption coefficient.4 This technique works best if 
one is able to eliminate spurious rapid frequency fluctuations. The wavelet shrinkage method, discussed above, is very well 
suited for such preconditioning of the experimental data used for the spectral ratio technique. The results are presented in this 
section 

An amplitude ratio method has been used to take a measurement of the optical absorption coefficient from OA experimental 
data by other authors.5 Their method utilized the amplitude ratio of the OA signal peaks in time domain under the rigid 
(pressure reflection coefficient k, = l) and the free boundary (k, = -1) conditions. In this manner, the need for some of the 
common parameters that are required to describe each signal can be eliminated. The method, however, requires that the 
experiment be done with the rigid boundary, which cannot be easily fulfilled in many applications. We have proposed a 
modified spectral ratio method, that takes the advantages of the traditional ratio technique but does not require a rigid 
boundary to be maintained. Instead, in our modified method, a generally constrained (-1 < k, < 1) boundary condition can be 
used. 

256 

The spectral ratio method takes the ratio of the spectra of two OA signals. If the signals are very noisy, their spectra will also 
be infected by the noise. Because the ratio operation is nonlinear, some errors, especially in the denominator will be 
amplified. Here we preconditioned the signals utilizing the wavelet shrinkage method to remove the noise contained in the 
signals. 

Our measurement includes four steps as shown in figure 5. First, we obtained the QA signals under the free and constrained 
boundary conditions. Next, we used wavelet shrinkage technique to denoise the OA signals. Third, we used the Fourier 
transform to obtain the spectra of the two signals. Finally, we took the ratio of the two spectra and the used the formula we 
derived to determine the absorption coefficient. Figure 5 shows the QA signals taken from the C1 connective tissue excited by 
the nitrogen laser. The absorption coefficient a, at 337 nm (the wavelength of the nitrogen laser) can be obtained from the 
slope r of g versus m by the following equation: 

a=----
2 (6) 

)'l'."o(I + k,.) 
where c0 is the sound velocity in the tissue and kr is the pressure reflection coefficient at the constrained boundary. 

The resultant absorption coefficient of C1 tissue from Figure 5 is 2.2x 103 m· 1• Similarly, the absorption coefficient of the C2 

tissue at the same wavelength can be obtained and turned out to be 5.8x 103 m·1• The conclusion that the optical absorption in 
C2 tissue is higher than that in the C1 tissue is consistent with our observation that the OA signal generated by the C2 tissue is 
stronger than the C1 tissue. Also, from the comparison of Figure 5(a) and (b), one sees that the random noise has been 
effectively removed from the raw signal by the wavelet shrinkage method. 
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Figure 5. Determining the optical absorption coefficient of the Cl connective tissue at wavelength 337nm: (a) noisy time signals at both 
boundaries; (b). denoised signals by wavelet shrinkage method; (c) spectra of the denoised signals; (d) best fitting for the parameter g 
versus frequency, whose slope is used to calculate the absorption coefficient a by Eq. (6). This experiment yields 
a(A = 337nm) = 2.2 x 103 m· 1• 

4. Conclusions 

The wavelet transform uses a dynamic time-frequency window to analyze a signal. The resultant transform has high time 
resolution in the high frequency region as well as high frequency resolution in the low frequency region. The continuous 
wavelet transform adds redundancy to the signal and provides a powerful tool to interpret the signal in the time-frequency 
space. We have used the CWT to analyze the optoacoustic signal obtained from a tissue sample. We have successfully 
identified the OA pulses generated by different media, namely the tissue sample itself and the container that was irradiated by 
the scattering light from the tissue, from their signatures in the time-frequency space. 

The discrete wavelet transform represents a signal sparsely, but accurately. The noise, on the other hand, is not sparsely 
represented, and this allows one to remove a large fraction of such noise, resulting in dramatic improvements in the signal. 
We have applied these techniques to several optoacoustic experiments, including those performed on biological tissues. The 
signal processing technique illustrated in this paper is a powerful tool that can be used in the biomedical imaging. Potential 
applications involve high spatial resolution of biological samples. In addition, the inherently non-invasive nature of the 
optoacoustic technique presents researchers with a potential technique that can be used in the real-time medical diagnostic 
field. The apparatus is compact and relatively inexpensive, and this opens the possibility of widespread use. 
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