540 research outputs found

    Chimeric Anti-Staphylococcal Enterotoxin B Antibodies and Lovastatin Act Synergistically to Provide In Vivo Protection against Lethal Doses of SEB

    Get PDF
    Staphylococcal enterotoxin B (SEB) is one of a family of toxins secreted by Staphylococcus aureus that act as superantigens, activating a large fraction of the T-cell population and inducing production of high levels of inflammatory cytokines that can cause toxic shock syndrome (TSS) and death. Extracellular engagement of the TCR of T-cells and class II MHC of antigen presenting cells by SEB triggers the activation of many intracellular signaling processes. We engineered chimeric antibodies to block the extracellular engagement of cellular receptors by SEB and used a statin to inhibit intracellular signaling. Chimeric human-mouse antibodies directed against different neutralizing epitopes of SEB synergistically inhibited its activation of human T-cells in vitro. In the in vivo model of lethal toxic shock syndrome (TSS) in HLA-DR3 transgenic mice, two of these antibodies conferred significant partial protection when administered individually, but offered complete protection in a synergistic manner when given together. Similarly, in vivo, lovastatin alone conferred only partial protection from TSS similar to single anti-SEB antibodies. However, used in combination with one chimeric neutralizing anti-SEB antibody, lovastatin provided complete protection against lethal TSS in HLA-DR3 transgenic mice. These experiments demonstrate that in vivo protection against lethal doses of SEB can be achieved by a statin of proven clinical safety and chimeric human-mouse antibodies, agents now widely used and known to be of low immunogenicity in human hosts

    Recognizing differentiating clinical signs of CLN3 disease (Batten disease) at presentation

    Get PDF
    Purpose To help differentiate CLN3 (Batten) disease, a devastating childhood metabolic disorder, from the similarly presenting early-onset Stargardt disease (STGD1). Early clinical identification of children with CLN3 disease is essential for adequate referral, counselling and rehabilitation. Methods Medical chart review of 38 children who were referred to a specialized ophthalmological centre because of rapid vision loss. The patients were subsequently diagnosed with either CLN3 disease (18 patients) or early-onset STGD1 (20 patients). Results Both children who were later diagnosed with CLN3 disease, as children who were later diagnosed with early-onset STGD1, initially presented with visual acuity (VA) loss due to macular dystrophy at 5-10 years of age. VA in CLN3 disease decreased significantly faster than in STGD1 (p = 0.01). Colour vision was often already severely affected in CLN3 disease while unaffected or only mildly affected in STGD1. Optic disc pallor on fundoscopy and an abnormal nerve fibre layer on optical coherence tomography were common in CLN3 disease compared to generally unaffected in STGD1. In CLN3 disease, dark-adapted (DA) full-field electroretinogram (ERG) responses were either absent or electronegative. In early-onset STGD1, DA ERG responses were generally unaffected. None of the STGD1 patients had an electronegative ERG. Conclusion Already upon presentation at the ophthalmologist, the retina in CLN3 disease is more extensively and more severely affected compared to the retina in early-onset STGD1. This results in more rapid VA loss, severe colour vision abnormalities and abnormal DA ERG responses as the main differentiating early clinical features of CLN3 disease

    Establishment of reference values for plasma neurofilament light based on healthy individuals aged 5-90 years

    Get PDF
    The recent development of assays that accurately quantify neurofilament light, a neuronal cytoskeleton protein, in plasma has generated a vast literature supporting that it is a sensitive, dynamic, and robust biomarker of neuroaxonal damage. As a result, efforts are now made to introduce plasma neurofilament light into clinical routine practice, making it an easily accessible complement to its cerebrospinal fluid counterpart. An increasing literature supports the use of plasma neurofilament light in differentiating neurodegenerative diseases from their non-neurodegenerative mimics and suggests it is a valuable biomarker for the evaluation of the effect of putative disease-modifying treatments (e.g. in multiple sclerosis). More contexts of use will likely emerge over the coming years. However, to assist clinical interpretation of laboratory test values, it is crucial to establish normal reference intervals. In this study, we sought to derive reliable cut-offs by pooling quantified plasma neurofilament light in neurologically healthy participants (5-90 years) from eight cohorts. A strong relationship between age and plasma neurofilament light prompted us to define the following age-partitioned reference limits (upper 95th percentile in each age category): 5-17 years = 7 pg/mL; 18-50 years = 10 pg/mL; 51-60 years = 15 pg/mL; 61-70 years = 20 pg/mL; 70 + years = 35 pg/mL. The established reference limits across the lifespan will aid the introduction of plasma neurofilament light into clinical routine, and thereby contribute to diagnostics and disease-monitoring in neurological practice

    The clinical spectrum of limb girdle muscular dystrophy. A survey in the Netherlands

    Get PDF
    A cross-sectional study was performed in the Netherlands to define the clinical characteristics of the various subtypes within the broad and heterogeneous entity of limb girdle muscular dystrophy (LGMD). An attempt was made to include all known cases of LGMD in the Netherlands. Out of the reported 200 patients, 105 who fulfilled strictly defined criteria were included. Forty-nine patients, mostly suffering from dystrophinopathies and facioscapulohumeral muscular dystrophy, appeared to be misdiagnosed. Thirty-four cases were sporadic, 42 patients came from autosomal recessive and 29 from autosomal dominant families. The estimated prevalence of LGMD in the Netherlands was at least 8.1 x 10-6. The clinical features of the autosomal recessive and sporadic cases were indistinguishable from those of the autosomal dominant patients, although half hypertrophy was seen more frequently, and the course of the disease was more severe in autosomal recessive and sporadic cases. The pectoralis, iliopsoas and gluteal muscles, hip adductors and hamstrings were the most affected muscles. Distal muscle involvement occurred late in the course of the disease. Facial weakness was a rare phenomenon. The severity of the clinical picture was correlated with a deteriorating lung function. All autosomal dominantly inherited cases showed a mild course, although in two families life-expectancy was reduced because of concomitant cardiac involvement

    Influence of Genetic Background and Tissue Types on Global DNA Methylation Patterns

    Get PDF
    Recent studies have shown a genetic influence on gene expression variation, chromatin, and DNA methylation. However, the effects of genetic background and tissue types on DNA methylation at the genome-wide level have not been characterized extensively. To study the effect of genetic background and tissue types on global DNA methylation, we performed DNA methylation analysis using the Affymetrix 500K SNP array on tumor, adjacent normal tissue, and blood DNA from 30 patients with esophageal squamous cell carcinoma (ESCC). The use of multiple tissues from 30 individuals allowed us to evaluate variation of DNA methylation states across tissues and individuals. Our results demonstrate that blood and esophageal tissues shared similar DNA methylation patterns within the same individual, suggesting an influence of genetic background on DNA methylation. Furthermore, we showed that tissue types are important contributors of DNA methylation states

    Cross-validated stepwise regression for identification of novel non-nucleoside reverse transcriptase inhibitor resistance associated mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Linear regression models are used to quantitatively predict drug resistance, the phenotype, from the HIV-1 viral genotype. As new antiretroviral drugs become available, new resistance pathways emerge and the number of resistance associated mutations continues to increase. To accurately identify which drug options are left, the main goal of the modeling has been to maximize predictivity and not interpretability. However, we originally selected linear regression as the preferred method for its transparency as opposed to other techniques such as neural networks. Here, we apply a method to lower the complexity of these phenotype prediction models using a 3-fold cross-validated selection of mutations.</p> <p>Results</p> <p>Compared to standard stepwise regression we were able to reduce the number of mutations in the reverse transcriptase (RT) inhibitor models as well as the number of interaction terms accounting for synergistic and antagonistic effects. This reduction in complexity was most significant for the non-nucleoside reverse transcriptase inhibitor (NNRTI) models, while maintaining prediction accuracy and retaining virtually all known resistance associated mutations as first order terms in the models. Furthermore, for etravirine (ETR) a better performance was seen on two years of unseen data. By analyzing the phenotype prediction models we identified a list of forty novel NNRTI mutations, putatively associated with resistance. The resistance association of novel variants at known NNRTI resistance positions: 100, 101, 181, 190, 221 and of mutations at positions not previously linked with NNRTI resistance: 102, 139, 219, 241, 376 and 382 was confirmed by phenotyping site-directed mutants.</p> <p>Conclusions</p> <p>We successfully identified and validated novel NNRTI resistance associated mutations by developing parsimonious resistance prediction models in which repeated cross-validation within the stepwise regression was applied. Our model selection technique is computationally feasible for large data sets and provides an approach to the continued identification of resistance-causing mutations.</p

    Epigenetic control of the ubiquitin carboxyl terminal hydrolase 1 in renal cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) gene involved in the regulation of cellular ubiquitin levels plays an important role in different cellular processes including cell growth and differentiation. Aberrant expression of UCHL1 has been found in a number of human solid tumors including renal cell carcinoma (RCC). In RCC, UCHL1 overexpression is associated with tumor progression and an altered von Hippel Lindau gene expression.</p> <p>Methods</p> <p>To determine the underlying mechanisms for the heterogeneous UCHL1 expression pattern in RCC the UCHL1 promoter DNA methylation status was determined in 17 RCC cell lines as well as in 32 RCC lesions and corresponding tumor adjacent kidney epithelium using combined bisulfite restriction analysis as well as bisulfite DNA sequencing.</p> <p>Results</p> <p>UCHL1 expression was found in all 32 tumor adjacent kidney epithelium samples. However, the lack of or reduced UCHL1 mRNA and/or protein expression was detected in 13/32 RCC biopsies and 7/17 RCC cell lines and due to either a total or partial methylation of the UCHL1 promoter DNA. Upon 2'-deoxy-5-azacytidine treatment an induction of UCHL1 mRNA and protein expression was found in 9/17 RCC cell lines, which was linked to the demethylation degree of the UCHL1 promoter DNA.</p> <p>Conclusion</p> <p>Promoter hypermethylation represents a mechanism for the silencing of the UCHL1 gene expression in RCC and supports the concept of an epigenetic control for the expression of UCHL1 during disease progression.</p

    Distinct Roles of Jasmonates and Aldehydes in Plant-Defense Responses

    Get PDF
    BACKGROUND: Many inducible plant-defense responses are activated by jasmonates (JAs), C(6)-aldehydes, and their corresponding derivatives, produced by the two main competing branches of the oxylipin pathway, the allene oxide synthase (AOS) and hydroperoxide lyase (HPL) branches, respectively. In addition to competition for substrates, these branch-pathway-derived metabolites have substantial overlap in regulation of gene expression. Past experiments to define the role of C(6)-aldehydes in plant defense responses were biased towards the exogenous application of the synthetic metabolites or the use of genetic manipulation of HPL expression levels in plant genotypes with intact ability to produce the competing AOS-derived metabolites. To uncouple the roles of the C(6)-aldehydes and jasmonates in mediating direct and indirect plant-defense responses, we generated Arabidopsis genotypes lacking either one or both of these metabolites. These genotypes were subsequently challenged with a phloem-feeding insect (aphids: Myzus persicae), an insect herbivore (leafminers: Liriomyza trifolii), and two different necrotrophic fungal pathogens (Botrytis cinerea and Alternaria brassicicola). We also characterized the volatiles emitted by these plants upon aphid infestation or mechanical wounding and identified hexenyl acetate as the predominant compound in these volatile blends. Subsequently, we examined the signaling role of this compound in attracting the parasitoid wasp (Aphidius colemani), a natural enemy of aphids. PRINCIPAL FINDINGS: This study conclusively establishes that jasmonates and C(6)-aldehydes play distinct roles in plant defense responses. The jasmonates are indispensable metabolites in mediating the activation of direct plant-defense responses, whereas the C(6)-aldehyes are not. On the other hand, hexenyl acetate, an acetylated C(6)-aldehyde, is the predominant wound-inducible volatile signal that mediates indirect defense responses by directing tritrophic (plant-herbivore-natural enemy) interactions. SIGNIFICANCE: The data suggest that jasmonates and hexenyl acetate play distinct roles in mediating direct and indirect plant-defense responses. The potential advantage of this "division of labor" is to ensure the most effective defense strategy that minimizes incurred damages at a reduced metabolic cost

    A statistical method for excluding non-variable CpG sites in high-throughput DNA methylation profiling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput DNA methylation arrays are likely to accelerate the pace of methylation biomarker discovery for a wide variety of diseases. A potential problem with a standard set of probes measuring the methylation status of CpG sites across the whole genome is that many sites may not show inter-individual methylation variation among the biosamples for the disease outcome being studied. Inclusion of these so-called "non-variable sites" will increase the risk of false discoveries and reduce statistical power to detect biologically relevant methylation markers.</p> <p>Results</p> <p>We propose a method to estimate the proportion of non-variable CpG sites and eliminate those sites from further analyses. Our method is illustrated using data obtained by hybridizing DNA extracted from the peripheral blood mononuclear cells of 311 samples to an array assaying 1505 CpG sites. Results showed that a large proportion of the CpG sites did not show inter-individual variation in methylation.</p> <p>Conclusions</p> <p>Our method resulted in a substantial improvement in association signals between methylation sites and outcome variables while controlling the false discovery rate at the same level.</p
    corecore