162 research outputs found

    The GALEX Arecibo SDSS Survey (GASS)

    Get PDF
    The GALEX Arecibo SDSS Survey (GASS) is a large targeted survey that started at Arecibo in March 2008. GASS is designed to measure the neutral hydrogen content of ~1000 massive galaxies (with stellar mass Mstar > 10^10 Msun) at redshift 0.025<z<0.05, uniformly selected from the SDSS spectroscopic and GALEX imaging surveys. Our selected mass range straddles the recently identified "transition mass" (Mstar ~3x10^10 Msun) above which galaxies show a marked decrease in their present to past-averaged star formation rates. GASS will produce the first statistically significant sample of massive "transition" galaxies with homogeneously measured stellar masses, star formation rates and gas properties. The analysis of this sample will allow us to investigate if and how the cold gas responds to a variety of different physical conditions in the galaxy, thus yielding insights on the physical processes responsible for the transition between blue, star-forming and red, passively evolving galaxies. GASS will be of considerably legacy value not only in isolation but also by complementing ongoing HI-selected surveys.Comment: 3 pages, 2 figures. To appear in proceedings of "The Evolution of Galaxies through the Neutral Hydrogen Window", R. Minchin & E. Momjian eds. Higher resolution version at http://www.mpa-garching.mpg.de/GASS/pubs.ph

    The GALEX Arecibo SDSS Survey VII: The Bivariate Neutral Hydrogen-Stellar Mass Function for Massive Galaxies

    Full text link
    We present the bivariate neutral atomic hydrogen (HI)---stellar mass function (HISMF) (phi(M_HI, M_*)) for massive (log M_*/M_sun > 10) galaxies derived from a sample of 480 local (0.025 < z < 0.050) galaxies observed in HI at Arecibo as part of the GALEX Arecibo SDSS Survey (GASS). We fit six different models to the HISMF and find that a Schechter function that extends down to a 1% HI gas fraction, with an additional fractional contribution below that limit, is the best parametrization of the HISMF. We calculate Omega_{HI, M_* >10^10} and find that massive galaxies contribute 41% of the HI density in the local universe. In addition to the binned HISMF we derive a continuous bivariate fit, which reveals that the Schechter parameters only vary weakly with stellar mass: M_HI^*, the characteristic HI mass, scales as M_*^0.39, alpha, the slope of the HISMF at moderate HI masses, scales as M_*^0.07, and f, the fraction of galaxies with HI gas fraction greater than 1%, scales as M_*^-0.24. The variation of f with stellar mass should be a strong constraint for numerical simulations. To understand the physical mechanisms that produce the shape of the HISMF we redefine the parameters of the Schechter function as explicit functions of stellar mass and star formation rate to produce a trivariate fit. This analysis reveals strong trends with SFR. While M_HI^* varies weakly with stellar mass and SFR, alpha is a stronger function of both stellar mass and especially star formation rate. The HISMF is a crucial tool that can be used to constrain cosmological galaxy simulations, test observational predictions of the HI content of populations of galaxies, and identify galaxies whose properties deviate from average trends.Comment: 31 pages, 20 figures, accepted to Ap

    ALFALFA HI Data Stacking III. Comparison of environmental trends in HI gas mass fraction and specific star formation rate

    Full text link
    It is well known that both the star formation rate and the cold gas content of a galaxy depend on the local density out to distances of a few Megaparsecs. In this paper, we compare the environmental density dependence of the atomic gas mass fractions of nearby galaxies with the density dependence of their central and global specific star formation rates. We stack HI line spectra extracted from the Arecibo Legacy Fast ALFA survey centered on galaxies with UV imaging from GALEX and optical imaging/spectroscopy from SDSS. We use these stacked spectra to evaluate the mean atomic gas mass fraction of galaxies in bins of stellar mass and local density. For galaxies with stellar masses less than 10^10.5 M_sun, the decline in mean atomic gas mass fraction with density is stronger than the decline in mean global and central specific star formation rate. The same conclusion does not hold for more massive galaxies. We interpret our results as evidence for ram-pressure stripping of atomic gas from the outer disks of low mass satellite galaxies. We compare our results with the semi-analytic recipes of Guo et al. (2011) implemented on the Millennium II simulation. These models assume that only the diffuse gas surrounding satellite galaxies is stripped, a process that is often termed "strangulation". We show that these models predict relative trends in atomic gas and star formation that are in disagreement with observations. We use mock catalogues generated from the simulation to predict the halo masses of the HI-deficient galaxies in our sample. We conclude that ram-pressure stripping is likely to become effective in dark matter halos with masses greater than 10^13 M_sun.Comment: 12 pages, 10 figures. Accepted for publication in MNRA

    Template Rotation Curves for Disk Galaxies

    Full text link
    A homogeneous sample of ~2200 low redshift disk galaxies with both high sensitivity long-slit optical spectroscopy and detailed I-band photometry is used to construct average, or template, rotation curves in separate luminosity classes, spanning 6 magnitudes in I-band luminosity. The template rotation curves are expressed as functions both of exponential disk scale lengths r_d and of optical radii Ropt, and extend out to 4.5-6.5 r_d, depending on the luminosity bin. The two parameterizations yield slightly different results beyond Ropt because galaxies whose Halpha emission can be traced to larger extents in the disks are typically of higher optical surface brightness and are characterized by larger values of Ropt/r_d. By either parameterization, these template rotation curves show no convincing evidence of velocity decline within the spatial scales over which they are sampled, even in the case of the most luminous systems. In contrast to some previous expectations, the fastest rotators (most luminous galaxies) have, on average, rotation curves that are flat or mildly rising beyond the optical radius, implying that the dark matter halo makes an important contribution to the kinematics also in these systems. The template rotation curves and the derived functional fits provide quantitative constraints for studies of the structure and evolution of disk galaxies, which aim at reproducing the internal kinematics properties of disks at the present cosmological epoch.Comment: 21 pages, 12 figures. To appear in the Astrophysical Journal (April 2006

    Rotational Widths for Use in the Tully-Fisher Relation. II. The Impact of Surface Brightness

    Full text link
    Using a large sample of spiral galaxies for which 21 cm single-dish and/or long-slit optical spectra are available, we make a detailed comparison between various estimates of rotational widths. Different optical width estimators are considered and their limitations discussed, with emphasis on biases associated with rotation curve properties (shape and extent) and disk central surface brightness. The best match with HI rotational velocities is obtained with Polyex widths, which are measured at the optical radius (encompassing a fixed fraction of the total light of the galaxy) from a model fit to the rotation curve. In contrast with Polyex widths, optical rotational velocities measured at 2.15 disk scale lengths r_d deviate from HI widths by an amount that correlates with the central surface brightness of the disk. This bias occurs because the rotation curves of galaxies are in general still rising at 2.15 r_d, and the fraction of total mass contained within this radius decreases with increasing disk surface brightness. Statistical corrections, parameterized by the radial extent of the observed rotation curve, are provided to reduce Polyex and HI width measurements into a homogeneous system. This yields a single robust estimate of rotational velocity to be used for applications of disk scaling relations.Comment: 13 pages, 8 figures. To appear in the Astronomical Journal (August 2007
    • …
    corecore