13 research outputs found

    Influence of the Addition of Ni on as-Cast Microstructure of Duplex Fe-Mn-Al-C Lightweight Steel

    No full text
    Lightweight Fe-Mn-Al-C steels have low density, and high mechanical properties, which makes them a possibility for weight reduction in vehicles for road transport. In steel production, as-cast microstructure is an important parameter for further processing. The as-cast microstructure of five lightweight duplex steels was investigated: Fe-15Mn-10Al-0.8C, Fe-15Mn-10Al-1.7Ni-0.8C, Fe-15Mn-10Al-3.9Ni-0.8C, Fe-15Mn-10Al-5.6Ni-0.8C and Fe-15Mn-10Al-8.6Ni-0.8C. The influence of Ni was analysed through thermodynamic calculations and microstructural characterization. The samples were analysed through an optical and electron microscopy. The base microstructure of the studied steel consists of ferrite and austenite. Further investigation showed that the decomposition of austenite was accompanied by the formation of kappa carbides and the B2 ordered phase. The addition of Ni prevented the formation of a lamellar kappa ferrite morphology, but at 5.6 wt.% Ni, the decomposition of austenite was most severe, resulting in a large amount of kappa carbides and a B2 ordered phase

    Influence of the addition of Ni on as-cast microstructure of duplex Fe-Mn-Al-C lightweight steel

    Full text link
    Lightweight Fe-Mn-Al-C steels have low density, and high mechanical properties, which makes them a possibility for weight reduction in vehicles for road transport. In steel production, as-cast microstructure is an important parameter for further processing. The as-cast microstructure of five lightweight duplex steels was investigated: Fe-15Mn-10Al-0.8C, Fe-15Mn-10Al-1.7Ni-0.8C, Fe-15Mn-10Al-3.9Ni-0.8C, Fe-15Mn-10Al-5.6Ni-0.8C and Fe-15Mn-10Al-8.6Ni-0.8C. The influence of Ni was analysed through thermodynamic calculations and microstructural characterization. The samples were analysed through an optical and electron microscopy. The base microstructure of the studied steel consists of ferrite and austenite. Further investigation showed that the decomposition of austenite was accompanied by the formation of kappa carbides and the B2 ordered phase. The addition of Ni prevented the formation of a lamellar kappa ferrite morphology, but at 5.6 wt.% Ni, the decomposition of austenite was most severe, resulting in a large amount of kappa carbides and a B2 ordered phase

    Kappa carbide precipitation in duplex Fe-Al-Mn-Ni-C low-density steel

    Full text link
    The microstructural evolution of a Fe-Mn-Al-Ni-C low-density steel was studied. The lightweight low-density steels are a promising material for the transportation industry, due to their good mechanical properties and low density. The base microstructure of the investigated steel consists of ferrite and austenite. Thermo-Calc calculations showed the formation of an ordered BCC (body-centred cubic) B2 phase below 1181 °C and kappa carbides below 864 °C. The steel was produced in a vacuum induction furnace, cast into ingots and hot forged into bars. The forged bars were solution annealed and then isothermally annealed at 350, 450, 550, 650, 750, and 850 °C. The microstructure of the as-cast state, the hot forged state, solution annealed, and isothermally annealed were investigated by optical microscopy and scanning electron microscopy. The results showed the formation of kappa carbides and the ordered B2 phase. The kappa carbides appeared in the as-cast sample and at the grain boundaries of the isothermally annealed samples. At 550 °C, the kappa carbides began to form in the austenite phase and coarsened with increasing temperature

    Kappa Carbide Precipitation in Duplex Fe-Al-Mn-Ni-C Low-Density Steel

    No full text
    The microstructural evolution of a Fe-Mn-Al-Ni-C low-density steel was studied. The lightweight low-density steels are a promising material for the transportation industry, due to their good mechanical properties and low density. The base microstructure of the investigated steel consists of ferrite and austenite. Thermo-Calc calculations showed the formation of an ordered BCC (body-centred cubic) B2 phase below 1181 °C and kappa carbides below 864 °C. The steel was produced in a vacuum induction furnace, cast into ingots and hot forged into bars. The forged bars were solution annealed and then isothermally annealed at 350, 450, 550, 650, 750, and 850 °C. The microstructure of the as-cast state, the hot forged state, solution annealed, and isothermally annealed were investigated by optical microscopy and scanning electron microscopy. The results showed the formation of kappa carbides and the ordered B2 phase. The kappa carbides appeared in the as-cast sample and at the grain boundaries of the isothermally annealed samples. At 550 °C, the kappa carbides began to form in the austenite phase and coarsened with increasing temperature

    Experimental Continuous Casting of Nitinol

    No full text
    Commercially available nitinol is currently manufactured using classic casting methods that produce blocks, the processing of which is difficult and time consuming. By continuous casting, wherein molten metal solidifies directly into a semi-finished product, the casting and processing of ingots can be avoided, which saves time and expense. However, no reports on continuous casting of nitinol could be found in the literature. In this work, Φ 12 mm nitinol strands were continuously cast. Using a graphite crucible, smelting of pure Ni and Ti in a medium frequency induction furnace is difficult, because it is hard to prevent a stormy reaction between Ni and Ti and to reach a homogeneous melt without a prolonged long holding time. Using a clay-graphite crucible, the stormy reaction is easily controlled, while effective stirring assures a homogeneous melt within minutes. Strands of nearly equiatomic chemical compositions were obtained with acceptable surface quality. The microstructure of strands containing over 50 at. % Ni, consisted of Ti2Ni and cubic NiTi, whereas the microstructure of strands containing less than 50 at. % Ni consisted of TiNi3 and cubic NiTi. This is consonant with the results of some other authors, and indicates that the eutectoid decomposition NiTi → Ti2Ni + TiNi3 does not take place

    Effect of Zr additions on non-metallic inclusions in X11CrNiMo12 steel

    Full text link
    The production of clean steel is associated with high-quality steel grades for demanding applications. The formation of oxide inclusions mainly depends on the deoxidation practiceit is usually carried out through Al additions, but alumina inclusions can have detrimental effects. An alternative zirconium inclusion modification was used in a creep-resistant steel to improve the cleanliness of laboratory-made steel. The thermodynamics behind the inclusion modification are presented, the reaction products are identified and the steel cleanliness improvement is quantified. The resulting influence of zirconium addition on non-metallic inclusions and mechanical properties is discussed. While the Zr additions drastically reduce the non-metallic inclusion size and area, additions above a certain amount result in the formation of zirconium nitrides that ultimately soften the martensitic steel due to the depletion of nitrogen in solid solution

    High-Temperature Oxidation of Boiler Steels at 650 °C

    No full text
    This study presents a comprehensive investigation of the formation, composition and behaviour of oxide layers during the high-temperature oxidation of four different steel alloys (16Mo3, 13Cr, T24 and P91) at a uniform temperature of 650 °C. The study is aimed at assessing the oxidation damage due to short-term overheating. The research combines CALPHAD (CALculation of PHAse Diagrams) calculations, thermogravimetric analysis (TGA) and advanced microscopy techniques, including scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD), to elucidate the complex mechanisms controlling oxidation kinetics and oxide layer development. CALPHAD calculations were used to determine the thermodynamically stable phases for each steel type at 650 °C and different oxygen activities. The results showed different phase compositions, highlighting the importance of the chromium content in steel for the formation of oxide layers. The different oxidation kinetics and oxide layer compositions are presented and associated with the increased risk of material degradation due to overheating. These results have significant implications for industrial applications, mainly the susceptibility to oxidation of low-alloyed steels like 16Mo3 and 13 Cr and contribute to a deeper understanding of oxidation processes in steels

    Role of substrate morphology in ion induced dewetting of thin solid films

    No full text
    none5siWe investigate the role of the substrate morphology in the dewetting of ultrathin chromium films irradiated with 30 keV Ga ions. Silicon surfaces with different roughness were used as substrates for the films. The results of the irradiation experiments and of related simulations indicate that the chromium films can undergo a dewetting-like process through the two standard channels that show up for liquids, namely the spinodal channel, and the dewetting by heterogeneous nucleation. The two processes are competitive, and the prevailing one can be predicted and selected according to the characteristics of the substrate.Luca Repetto; Roberto Lo Savio; Barbara Setina Batic; Giuseppe Firpo; Ugo ValbusaRepetto, Luca; LO SAVIO, Roberto; Barbara Setina, Batic; Firpo, Giuseppe; Valbusa, Ug

    The Influence of Segregation Bands and Hot Rolling on the Precipitation of Secondary Phases during Aging at 750 °C for Nickel Alloy 625

    No full text
    For Inconel 625, where the γ” and δ phases precipitate, the influence of prior hot rolling on the process is not well covered. The influence of segregation bands and prior hot rolling on the precipitation of secondary phases during aging at 750 °C for different times was investigated. Prior hot-rolling was conducted on a hot rolling mill at 1050 °C and 1150 °C with three different deformation levels. The hot rolled samples were aged at 750 °C for 1, 5, 25 and 125 h. The γ″ precipitated in both the deformed and recrystallized grains in the segregation bands containing a high concentration of niobium and molybdenum and a lower concentration of nickel, chromium and iron. The opposite was observed between the segregation bands where no γ″ precipitate was found. There was a smooth transition in the density and the size of the γ″ particles in the deformed grains at the border of the segregation bands, while a more complex transition occurred in the recrystallized grains. This occurred in the area where the average niobium concentration decreased from 4.5 to 2.7 wt. %, which influenced the mechanical properties

    The Influence of Glow and Afterglow Cold Plasma Treatment on Biochemistry, Morphology, and Physiology of Wheat Seeds

    No full text
    Cold plasma (CP) technology is a technique used to change chemical and morphological characteristics of the surface of various materials. It is a newly emerging technology in agriculture used for seed treatment with the potential of improving seed germination and yield of crops. Wheat seeds were treated with glow (direct) or afterglow (indirect) low-pressure radio-frequency oxygen plasma. Chemical characteristics of the seed surface were evaluated by XPS and FTIR analysis, changes in the morphology of the seed pericarp were analysed by SEM and AFM, and physiological characteristics of the seedlings were determined by germination tests, growth studies, and the evaluation of α-amylase activity. Changes in seed wettability were also studied, mainly in correlation with functionalization of the seed surface and oxidation of lipid molecules. Only prolonged direct CP treatment resulted in altered morphology of the seed pericarp and increased its roughness. The degree of functionalization is more evident in direct compared to indirect CP treatment. CP treatment slowed the germination of seedlings, decreased the activity of α-amylase in seeds after imbibition, and affected the root system of seedlings
    corecore