938 research outputs found

    Relativistic dynamical friction in a collisional fluid

    Full text link
    The dynamical friction force experienced by a body moving at relativistic speed in a gaseous medium is examined. This force, which arises due to the gravitational interaction of the body with its own gravitationally-induced wake, is calculated for straight-line and circular motion, generalizing previous results by several authors. Possible applications to the study of extreme mass-ratio inspirals around strongly-accreting supermassive black holes are suggested.Comment: 9 pages and 1 figure. Accepted for publication in MNRAS. Replaced to include minor changes made in proo

    The importance of precession in modelling the direction of the final spin from a black-hole merger

    Full text link
    The prediction of the spin of the black hole resulting from the merger of a generic black-hole binary system is of great importance to study the cosmological evolution of supermassive black holes. Several attempts have been recently made to model the spin via simple expressions exploiting the results of numerical-relativity simulations. Here, I first review the derivation of a formula, proposed in Barausse & Rezzolla, Apj 704 L40, which accurately predicts the final spin magnitude and direction when applied to binaries with separations of hundred or thousands of gravitational radii. This makes my formula particularly suitable for cosmological merger-trees and N-body simulations, which provide the spins and angular momentum of the two black holes when their separation is of thousands of gravitational radii. More importantly, I investigate the physical reason behind the good agreement between my formula and numerical relativity simulations, and nail it down to the fact that my formula takes into account the post-Newtonian precession of the spins and angular momentum in a consistent manner.Comment: 6 pages, 2 figures. Panel added to fig 2, discussion extended to comply with referee's comments. Version accepted for publication as proceeding of the 8th Amaldi International Conference on Gravitational Waves, NYC, 21-26 June 200

    Perturbed Kerr Black Holes can probe deviations from General Relativity

    Full text link
    Although the Kerr solution is common to many gravity theories, its perturbations are different in different theories. Hence, perturbed Kerr black holes can probe deviations from General Relativity.Comment: minor changes to match version published in Phys. Rev. Let

    Test bodies and naked singularities: is the self-force the cosmic censor?

    Full text link
    Jacobson and Sotiriou showed that rotating black holes could be spun-up past the extremal limit by the capture of non-spinning test bodies, if one neglects radiative and self-force effects. This would represent a violation of the Cosmic Censorship Conjecture in four-dimensional, asymptotically flat spacetimes. We show that for some of the trajectories giving rise to naked singularities, radiative effects can be neglected. However, for these orbits the conservative self-force is important, and seems to have the right sign to prevent the formation of naked singularities.Comment: 4 pages, 1 table. Phys. Rev. Lett. in press. Substantially improved version, showing that the conservative self-force's sign is the right one to prevent the formation of naked singularities for all orbit

    Hamiltonian of a spinning test-particle in curved spacetime [Erratum: Phys. Rev. D 80, 104025 (2009)]

    Get PDF
    Using a Legendre transformation, we compute the unconstrained Hamiltonian of a spinning test-particle in a curved spacetime at linear order in the particle spin. The equations of motion of this unconstrained Hamiltonian coincide with the Mathisson-Papapetrou-Pirani equations. We then use the formalism of Dirac brackets to derive the constrained Hamiltonian and the corresponding phase-space algebra in the Newton-Wigner spin supplementary condition (SSC), suitably generalized to curved spacetime, and find that the phase-space algebra (q,p,S) is canonical at linear order in the particle spin. We provide explicit expressions for this Hamiltonian in a spherically symmetric spacetime, both in isotropic and spherical coordinates, and in the Kerr spacetime in Boyer-Lindquist coordinates. Furthermore, we find that our Hamiltonian, when expanded in Post-Newtonian (PN) orders, agrees with the Arnowitt-Deser-Misner (ADM) canonical Hamiltonian computed in PN theory in the test-particle limit. Notably, we recover the known spin-orbit couplings through 2.5PN order and the spin-spin couplings of type S_Kerr S (and S_Kerr^2) through 3PN order, S_Kerr being the spin of the Kerr spacetime. Our method allows one to compute the PN Hamiltonian at any order, in the test-particle limit and at linear order in the particle spin. As an application we compute it at 3.5PN order

    Black holes in Einstein-aether and Horava-Lifshitz gravity

    Full text link
    We study spherical black-hole solutions in Einstein-aether theory, a Lorentz-violating gravitational theory consisting of General Relativity with a dynamical unit timelike vector (the "aether") that defines a preferred timelike direction. These are also solutions to the infrared limit of Horava-Lifshitz gravity. We explore parameter values of the two theories where all presently known experimental constraints are satisfied, and find that spherical black-hole solutions of the type expected to form by gravitational collapse exist for all those parameters. Outside the metric horizon, the deviations away from the Schwarzschild metric are typically no more than a few percent for most of the explored parameter regions, which makes them difficult to observe with electromagnetic probes, but in principle within reach of future gravitational-wave detectors. Remarkably, we find that the solutions possess a universal horizon, not far inside the metric horizon, that traps waves of any speed relative to the aether. A notion of black hole thus persists in these theories, even in the presence of arbitrarily high propagation speeds.Comment: 18 pages, 12 figures; v2: typos corrected, matches published versio

    The complete non-spinning effective-one-body metric at linear order in the mass ratio

    Full text link
    Using the main result of a companion paper, in which the binding energy of a circular-orbit non-spinning compact binary system is computed at leading-order beyond the test-particle approximation, the exact expression of the effective-one-body (EOB) metric component g^eff_tt is obtained through first order in the mass ratio. Combining these results with the recent gravitational self-force calculation of the periastron advance for circular orbits in the Schwarzschild geometry, the EOB metric component g^eff_rr is also determined at linear order in the mass ratio. These results assume that the mapping between the real and effective Hamiltonians at the second and third post-Newtonian (PN) orders holds at all PN orders. Our findings also confirm the advantage of resumming the PN dynamics around the test-particle limit if the goal is to obtain a flexible model that can smoothly connect the test-mass and equal-mass limits.Comment: 11 pages, 2 figures; appendix generalized to include the logarithmic contributions in the post-Newtonian Hamiltonian. Results unchanged. Matches version to be published in Phys. Rev.

    Polytropic spheres in Palatini f(R) gravity

    Full text link
    We examine static spherically symmetric polytropic spheres in Palatini f(R) gravity and show that no regular solutions to the field equations exist for physically relevant cases such as a monatomic isentropic gas or a degenerate electron gas, thus casting doubt on the validity of Palatini f(R) gravity as an alternative to General Relativity.Comment: Talk given by EB at the 30th Spanish Relativity Meeting, 10 - 14 September 2007, Tenerife (Spain). Based on arXiv:gr-qc/0703132 and arXiv:0712.1141 [gr-qc

    A no-go theorem for polytropic spheres in Palatini f(R) gravity

    Get PDF
    Non-vacuum static spherically-symmetric solutions in Palatini f(R) gravity are examined. It is shown that for generic choices of f(R), there are commonly-used equations of state for which no satisfactory physical solution of the field equations can be found within this framework, apart from in the special case of General Relativity, casting doubt on whether Palatini f(R) gravity can be considered as giving viable alternatives to General Relativity.Comment: 7 pages, 1 figure. Version accepted for publication as a Fast Track Communication in CQ
    • …
    corecore