8 research outputs found

    A novel algicidal properties of fermentation products from Pseudomonas sp. Ps3 strain on the toxic red tide dinoflagellate species

    Get PDF
    The viability of both China’s offshore fishing operations and the global marine fishing industry is threatened by the occurrence of red tides caused by Gymnodinium catenatum and Karenia mikimotoi. Effective control of these dinoflagellate-mediated red tides has become a pressing issue that requires immediate attention. In this study, High-efficiency marine alginolytic bacteria were isolated and underwent molecular biological identification to confirm their algicidal properties. Based on a combination of morphological, physiological, biochemical, and sequencing results, Strain Ps3 was identified as belonging to the species Pseudomonas sp. We examine the effects of algicidal bacteria on the red tide species G. catenatum and K. mikimotoi within an indoor experimental setting. Then gas chromatography– mass spectrometry (GC–MS) was used to analyze the structure of the algolytic active substances. This investigation demonstrated that with exposure to the algae-lysis experiment, the Ps3 strain has the best algae-lysis effect, with G. catenatum and K. mikimotoi reaching 83.0 and 78.3%. Our results from the sterile fermentation broth experiment showed that the inhibitory effect on the two red tide algae was positively correlated with the concentration of the treatment. At a treatment concentration of 2.0% (v/v), the 48 h lysis rates of G. catenatum and K. mikimotoi due to exposure to the Ps3 bacterial fermentation broth were 95.2 and 86.7%, respectively. The results of this study suggest that the algaecide may be a rapid and effective method to control dinoflagellate blooms, as evidenced by the observed changes in cellular morphology in all cases. In the ethyl acetate phase of Ps3 fermentation broth, the cyclic (leucine-leucine) dipeptide was the most abundant. The findings of this study contribute to our understanding of red tide prevention and control and provide a theoretical foundation for further research in this field

    Coagulant plus Bacillus nitratireducens fermentation broth technique provides a rapid algicidal effect of toxic red tide dinoflagellate

    Get PDF
    When the toxic red tide alga Gymnodinium catenatum H.W. Graham accumulates in sediment through sexual reproduction, it provides the provenance of a periodic outbreak of red tide, a potential threat to the marine environment. In our study, the flocculation effects of four coagulants were compared. Bacteria fermentation (Ba3) broth and coagulant were combined with Ba3 to reduce the vegetative cells of G. catenatum, inhibit the cystic germination in the sediment, and control the red tide outbreak. To promote a more efficient and environmentally friendly algae suppression method, we studied these four coagulants combined with algae suppression bacteria for their effect on G. catenatum. The results show that polyaluminum chloride (PAC) is more efficient than other coagulants when used alone because it had a more substantial inhibitory effect. Ba3 broth also had a beneficial removal effect on the vegetative cells of G. catenatum. The inhibition efficiency of 2-day fermentation liquid was higher than that of 1-day and 3-day fermentation liquids. When combined, the PAC and Ba3 broth produced a pronounced algae inhibition effect that effectively hindered the germination of algae cysts. We conclude that this combination provides a scientific reference for the prevention and control of marine red tide. Our results suggest that designing environmentally friendly methods for the management of harmful algae is quite feasible

    Modeling and optimization of the effect of abiotic stressors on the productivity of the biomass, chlorophyll and lutein in microalgae Chlorella pyrenoidosa

    No full text
    Microalgae have been exploited for food, biofuels, animal feed and pharmaceutical products over the last few decades. The microalgae biotechnology has grown and diversified significantly, despite these developments the number of commercially available products are still limited and thus there is a significant need to increase the production. Modeling and optimization are used to simulate the behavior of the studied problems and provide a basis for selecting optimum input settings that optimize the outputs. This paper investigates the effect of the beijerinck solution (BS), phosphate solution (PS) and hunter trace (HT) with different four levels (values) on the biomass productivity (BP), lutein productivity (LP) and total chlorophyll (TC) in microalgae Chlorella pyrenoidosa. A closer look at the effect of each level of the input factors on the output factors is given. Various modeling techniques, such as the spline model and Gaussian Kriging model, are investigated to recommend the optimal models for describing the relationships between the input factors and each output factor. The validation and efficiency of the recommended models are studied from various points of view. Based on the recommended models, the predicted values of the BP, LP and TC are given for all the possible level-combinations (conditions) of the BS, PS and HT and the best (optimal) level-combinations of the BS, PS and HT that maximize the BP, LP and TC are recommended

    Algicidal Properties of Microbial Fermentation Products on Inhibiting the Growth of Harmful Dinoflagellate Species

    No full text
    The fermentation processes of algicidal bacteria offer an eco-friendly and promising approach for controlling harmful algae blooms (HABs). The strain Ba3, previously isolated and identified as Bacillus sp., displays robust algicidal activity against HABs dinoflagellate in particular. Microbial fermentation products have also been found to provide metabolites with multiple bioactivities, which has been shown to reduce harmful algae species’ vegetative cells and thus reduce red tide outbreaks. In this study, the microbial fermentation of algicidal bacterium Ba3 was analyzed for its potential ability of algicidal compounds. A treatment time increased the algicidal efficiency of the fermentation products against Prorocentrum donghaiense (91%) and Alexandrium tamarense (82%). Among the treatment groups, the changing trend for the 2% treatment group was faster than that for the other treatments, showing that the inhibition rate could reach 99.1% in two days. Active components were separated by organic solvent extraction and macroporous resin, and the molecular weight of the active components was analyzed by LC-MS. The result shows that the microbial fermentation products offer a potential, not practical use for controlling the outbreaks of dinoflagellate blooms. As a result of its potential application for inhibiting HABs, these findings provide an encouraging basis for promoting large-scale fermentation production and the controlling the outbreaks of red tide

    Algicidal Properties of Microbial Fermentation Products on Inhibiting the Growth of Harmful Dinoflagellate Species

    No full text
    The fermentation processes of algicidal bacteria offer an eco-friendly and promising approach for controlling harmful algae blooms (HABs). The strain Ba3, previously isolated and identified as Bacillus sp., displays robust algicidal activity against HABs dinoflagellate in particular. Microbial fermentation products have also been found to provide metabolites with multiple bioactivities, which has been shown to reduce harmful algae species’ vegetative cells and thus reduce red tide outbreaks. In this study, the microbial fermentation of algicidal bacterium Ba3 was analyzed for its potential ability of algicidal compounds. A treatment time increased the algicidal efficiency of the fermentation products against Prorocentrum donghaiense (91%) and Alexandrium tamarense (82%). Among the treatment groups, the changing trend for the 2% treatment group was faster than that for the other treatments, showing that the inhibition rate could reach 99.1% in two days. Active components were separated by organic solvent extraction and macroporous resin, and the molecular weight of the active components was analyzed by LC-MS. The result shows that the microbial fermentation products offer a potential, not practical use for controlling the outbreaks of dinoflagellate blooms. As a result of its potential application for inhibiting HABs, these findings provide an encouraging basis for promoting large-scale fermentation production and the controlling the outbreaks of red tide

    Adsorption-Release Characteristics of Phosphorus and the Community of Phosphorus Accumulating Organisms of Sediments in a Shallow Lake

    No full text
    One of the most challenging issues for developing countries in modern times is the care and management of clean, potable drinking water sources. Accordingly, this study singled out potential contributing factors to harmful algae blooms with a particular focus on phosphorus (P) release. The potential risks of P release for the drinking water from a lake in Fujian were assessed by investigating the spatial-temporal distribution of P, its exchange capacity, and its discharge capacity in sediment, including the community composition of phosphorus accumulating organisms (PAOs) and the phosphate’s initial migration effects on sediments. Different mixed materials, including soil aggregate distributions, sorbent, fractions, adsorption-desorption of P, and the community composition of PAOs were assessed. Total phosphorus (TP) content was measured at 24.4 ± 1.2 to 563.9 ± 38.2 mg/kg, but contents displayed some spatial differences. The dominant Ps found in the sample sediments were organic phosphorus and inorganic phosphorus associated with hydroxide Fe/Al-P, which accounted for 48.6% and 43.6%, respectively, of the TP content in the lake’s central waters. The TP concentration in vertical sediment ranged from 436.2 ± 21.3 to 602.9 ± 31.4 mg/kg. The TP spatio-temporal distribution inputs varied with rainfall (p < 0.05). P deposition occurred throughout most water bodies (p < 0.05), covering extensive areas and also decreasing at lower depths. Forty-four operational taxonomic unit (OTU) phosphorus-accumulating organism types from 11 phyla were detected in the sediment samples obtained from the Sanshiliujiao Lakes region. Proteobacteria also dominated compared to the organisms with the strongest PAOs. The diversity of PAOs in summer samples was significantly higher than that of the autumn samples. These findings provide a scientific foundation for determining the future discovery of the microbial mechanisms involved in the phosphorus metabolic cycle found in reservoir sediments. Various forms of phosphorus influenced the PAO diversity, especially Fe/Al-P. Thus, the abundance of PAOs in the sediment proved to be an essential component of the P cycle and may even play a key role in regional material circulation and in causing other environmental issues

    Data_Sheet_1_A novel algicidal properties of fermentation products from Pseudomonas sp. Ps3 strain on the toxic red tide dinoflagellate species.docx

    No full text
    The viability of both China’s offshore fishing operations and the global marine fishing industry is threatened by the occurrence of red tides caused by Gymnodinium catenatum and Karenia mikimotoi. Effective control of these dinoflagellate-mediated red tides has become a pressing issue that requires immediate attention. In this study, High-efficiency marine alginolytic bacteria were isolated and underwent molecular biological identification to confirm their algicidal properties. Based on a combination of morphological, physiological, biochemical, and sequencing results, Strain Ps3 was identified as belonging to the species Pseudomonas sp. We examine the effects of algicidal bacteria on the red tide species G. catenatum and K. mikimotoi within an indoor experimental setting. Then gas chromatography– mass spectrometry (GC–MS) was used to analyze the structure of the algolytic active substances. This investigation demonstrated that with exposure to the algae-lysis experiment, the Ps3 strain has the best algae-lysis effect, with G. catenatum and K. mikimotoi reaching 83.0 and 78.3%. Our results from the sterile fermentation broth experiment showed that the inhibitory effect on the two red tide algae was positively correlated with the concentration of the treatment. At a treatment concentration of 2.0% (v/v), the 48 h lysis rates of G. catenatum and K. mikimotoi due to exposure to the Ps3 bacterial fermentation broth were 95.2 and 86.7%, respectively. The results of this study suggest that the algaecide may be a rapid and effective method to control dinoflagellate blooms, as evidenced by the observed changes in cellular morphology in all cases. In the ethyl acetate phase of Ps3 fermentation broth, the cyclic (leucine-leucine) dipeptide was the most abundant. The findings of this study contribute to our understanding of red tide prevention and control and provide a theoretical foundation for further research in this field.</p
    corecore