703 research outputs found

    Kolmogorov Dispersion for Turbulence in Porous Media: A Conjecture

    Full text link
    We will utilise the self-avoiding walk (SAW) mapping of the vortex line conformations in turbulence to get the Kolmogorov scale dependence of energy dispersion from SAW statistics, and the knowledge of the disordered fractal geometries on the SAW statistics. These will give us the Kolmogorov energy dispersion exponent value for turbulence in porous media in terms of the size exponent for polymers in the same. We argue that the exponent value will be somewhat less than 5/3 for turbulence in porous media.Comment: 3 page

    Universal Scaling Property of System Approaching Equilibrium

    Full text link
    In this Letter we show that the diffusion kinetics of kinetic energy among the atoms in non- equilibrium crystalline systems follows universal scaling relation and obey Levy-walk properties. This scaling relation is found to be valid for systems no matter how far they are driven out of equilibrium.Comment: 6 pages, 4 figure

    Energy Management in a Cooperative Energy Harvesting Wireless Sensor Network

    Full text link
    In this paper, we consider the problem of finding an optimal energy management policy for a network of sensor nodes capable of harvesting their own energy and sharing it with other nodes in the network. We formulate this problem in the discounted cost Markov decision process framework and obtain good energy-sharing policies using the Deep Deterministic Policy Gradient (DDPG) algorithm. Earlier works have attempted to obtain the optimal energy allocation policy for a single sensor and for multiple sensors arranged on a mote with a single centralized energy buffer. Our algorithms, on the other hand, provide optimal policies for a distributed network of sensors individually harvesting energy and capable of sharing energy amongst themselves. Through simulations, we illustrate that the policies obtained by our DDPG algorithm using this enhanced network model outperform algorithms that do not share energy or use a centralized energy buffer in the distributed multi-nodal case.Comment: 11 pages, 4 figure

    Persistent time intervals between features in solar flare hard X-ray emission

    Get PDF
    Several solar hard X-ray events (greater than 100 keV) were observed simultaneously with identical instruments on the Venera 11, 12, 13, 14, and Prognoz spacecraft. High time resolution (= 2 ms) data were stored in memory when a trigger occurred. The observations of modulation are presented with a period of 1.6 s for the event on December 3, 1978. Evidence is also presented for fast time fluctuations from an event on November 6, 1979, observed from Venera 12 and another on September 6, 1981, observed from the Solar Maximum Mission. Power spectrum analysis, epoch folding, and Monte Carlo simulation were used to evaluate the statistical significance of persistent time delays between features. The results are discussed in light of the MHD model proposed by Zaitsev and Stepanov

    Crustal Oscillations of Slowly Rotating Relativistic Stars

    Full text link
    We study low-amplitude crustal oscillations of slowly rotating relativistic stars consisting of a central fluid core and an outer thin solid crust. We estimate the effect of rotation on the torsional toroidal modes and on the interfacial and shear spheroidal modes. The results compared against the Newtonian ones for wide range of neutron star models and equations of state.Comment: 15 page
    corecore