9 research outputs found

    Activity of Antimicrobial Peptides and Conventional Antibiotics against Superantigen Positive Staphylococcus aureus Isolated from the Patients with Neoplastic and Inflammatory Erythrodermia

    Get PDF
    Superantigens are proteins comprising a group of molecules produced by various microorganisms. They are involved in pathogenesis of several human diseases. The aim of the study was the comparison of susceptibility to antibiotics and antimicrobial peptides (AMPs) of Staphylococcus aureus (SA) strains producing staphylococcal enterotoxins SEA, SEB, SEC, SED, and TSST-1 and nonproducing ones. In the group of the total 28 of the patients with erythrodermia the presence of SA was confirmed in 24 cases. The total of 14 strains of SA excreted enterotoxins SEA, SEC, SED, and TSST-1. We did not observe that strains producing mentioned superantigens were less susceptible to AMPs (aurein 1.2, citropin 1.1, lipopeptide, protegrin 1, tachyplesin 3, temporin A, and uperin 3.6). The opposite situation was observed in conventional antibiotics. SA strains excreting tested superantigens had higher MICs and MBCs than nonproducing ones. The interesting finding considering the high efficacy of AMPs, against all examined strains of SA, makes them attractive candidates for therapeutic implication

    The Antistaphylococcal Activity of Citropin 1.1 and Temporin A against Planktonic Cells and Biofilms Formed by Isolates from Patients with Atopic Dermatitis: An Assessment of Their Potential to Induce Microbial Resistance Compared to Conventional Antimicrobials

    No full text
    Staphylococcus aureus (SA) colonizes the vast majority of patients with atopic dermatitis (AD). Its resistance to antibiotics and ability to form biofilms are the main origins of therapeutic complications. Endogenous antimicrobial peptides (AMPs) exhibit strong activity against SA, including antibiotic resistant strains as well as bacteria existing in biofilm form. The purpose of the present work was to determine the antistaphylococcal activity of two amphibian peptides against SA isolated from patients with AD. The AMPs demonstrated permanent activity towards strains exposed to sublethal concentrations of the compounds and significantly stronger antibiofilm activity in comparison to that of conventional antimicrobials. The results suggest the potential application of amphibian AMPs as promising antistaphylococcal agents for the management of skin infections

    In Vitro Evaluation of Cytotoxicity and Permeation Study on Lysine- and Arginine-Based Lipopeptides with Proven Antimicrobial Activity

    No full text
    Owing to their excellent antimicrobial activities with a relatively low cost of production, lipopeptides are being intensively investigated as potential alternatives to popular antimicrobials. However, a critical obstacle for their application is a relatively high toxicity, hence a lot of attention has been paid to designing new molecules with optimal properties. In this study we synthesized the following lipopeptides: C16-KK-NH2, C16-KÎľK-NH2, C16-KKK-NH2, C16-KRK-NH2, C16-RR-NH2, C16-RRR-NH2, (C10)2-KKKK-NH2 and (C12)2-KKKK-NH2. Their antimicrobial activity against representative strains of Gram-positive bacteria, Gram-negative bacteria and fungi has been confirmed. The compounds have been evaluated with regard to the safety of their application in dermatology. The cytotoxicity was determined in HaCaT keratinocytes using MTT assay, whereas Strat M membranes placed in Franz diffusion cells were used to assess their ability to skin permeation. The compounds containing one hexadecanoic acid chain turned out to be very toxic towards human keratinocytes, while lipopeptides containing two fatty acid chains (decanoic and dodecanoic) demonstrated much lower cytotoxicity. For the most promising lipopeptide, (C10)2-KKKK-NH2, the measured IC50 on HaCaT keratinocytes was few times higher as compared to MICs obtained for the tested bacteria. Both groups of lipopeptides did not permeate the model membranes and therefore lack of permeation through human skin could be expected. The results of this work encourage further research on the potential application of lipopeptides with two fatty acids as novel antimicrobials
    corecore