1,720 research outputs found

    Ultraviolet Raman Spectroscopy of Single and Multi-layer Graphene

    Full text link
    We investigated Raman spectra of single-layer and multi-layer graphene under ultraviolet laser excitation at the wavelength of 325 nm. It was found that while the G peak of graphene remains pronounced in UV Raman spectra, the 2D band intensity undergoes severe quenching. The evolution of the ratio of the intensities of the G and 2D peaks, I(G)/I(2D), as the number of graphene layers n changes from n=1 to n=5, is different in UV Raman spectra from that in conventional visible Raman spectra excited at the 488 nm and 633 nm wavelengths. The 2D band under UV excitation shifts to larger wave numbers and is found near 2825 1/cm. The observed UV Raman features of graphene were explained by invoking the resonant scattering model. The obtained results contribute to the Raman nanometrology of graphene by providing an additional metric for determining the number of graphene layers and assessing its quality.Comment: 18 pages; 5 figures; submitted for publication on February 20, 200

    Diversity of immunoglobulin light chain genes in non-teleost ray-finned fish uncovers IgL subdivision into five ancient isotypes

    Get PDF
    <p>The aim of this study was to fill important gaps in the evolutionary history of immunoglobulins by examining the structure and diversity of IgL genes in non-teleost ray-finned fish. First, based on the bioinformatic analysis of recent transcriptomic and genomic resources, we experimentally characterized the IgL genes in the chondrostean fish, Acipenser ruthenus (sterlet). We show that this species has three loci encoding IgL kappa-like chains with a translocon-type gene organization and a single VJC cluster, encoding homogeneous lambda-like light chain. In addition, sterlet possesses sigma-like VL and J-CL genes, which are transcribed separately and both encode protein products with cleavable leader peptides. The Acipenseriformes IgL dataset was extended by the sequences mined in the databases of species belonging to other non-teleost lineages of ray-finned fish: Holostei and Polypteriformes. Inclusion of these new data into phylogenetic analysis showed a clear subdivision of IgL chains into five groups. The isotype described previously as the teleostean IgL lambda turned out to be a kappa and lambda chain paralog that emerged before the radiation of ray-finned fish. We designate this isotype as lambda-2. The phylogeny also showed that sigma-2 IgL chains initially regarded as specific for cartilaginous fish are present in holosteans, polypterids, and even in turtles. We conclude that there were five ancient IgL isotypes, which evolved differentially in various lineages of jawed vertebrates.</p

    Carbon-based interlayers in perovskite solar cells

    Get PDF
    Perovskites are solution-processed, high-performance semiconductors of interest in low-cost photovoltaics. The interfaces between the perovskite photoactive layers and the top and bottom contacts are crucial for efficient charge transport and minimizing trapping. Control of the collection of charge carriers at these interfaces is decisive to device performance. Here, we review recent progress in the realization of efficient perovskite solar cells using cheap, easily processed, stable, carbon-based interlayers. Interface materials including graphene, carbon nanotubes, fullerenes, graphene quantum dots and carbon dots are introduced and their influence on device performance is discussed

    Fluorescence energy transfer in quantum dot/azo dye complexes in polymer track membranes

    Get PDF
    Fluorescence resonance energy transfer in complexes of semiconductor CdSe/ZnS quantum dots with molecules of heterocyclic azo dyes, 1-(2-pyridylazo)-2-naphthol and 4-(2-pyridylazo) resorcinol, formed at high quantum dot concentration in the polymer pore track membranes were studied by steady-state and transient PL spectroscopy. The effect of interaction between the complexes and free quantum dots on the efficiency of the fluorescence energy transfer and quantum dot luminescence quenching was found and discussed

    Formation of Gold Nanoparticle Self-Assembling Films in Various Polymer Matrices for SERS Substrates

    Get PDF
    Surface-enhanced Raman spectroscopy (SERS) is regarded as a versatile tool for studying the composition and structure of matter. This work has studied the preparation of a SERS substrate based on a self-assembling plasmonic nanoparticle film (SPF) in a polymer matrix. Several synthesis parameters for the SPF are investigated, including the size of the particles making up the film and the concentration and type of the self-assembling agent. The result of testing systems with different characteristics is discussed using a model substance (pseudo isocyaniniodide). These models can be useful in the study of biology and chemistry. Research results contain the optimal parameters for SPF synthesis, maximizing the SERS signal. The optimal procedure for SPF assembly is determined and used for the synthesis of composite SPFs within different polymer matrices. SPF in a polymer matrix is necessary for the routine use of the SERS substrate for various types of analytes, including solid samples or those sensitive to contamination. Polystyrene, polyvinyl alcohol (PVA), and polyethylene are investigated to obtain a polymer matrix for SPF, and various methods of incorporating SPF into a polymer matrix are being explored. It is found that films with the best signal enhancement and reproducibility were obtained in polystyrene. The minimum detectable concentration for the SERS substrate obtained is equal to 10 10 M We prepared a SERS substrate with an analytical enhancement factor of 2.7 104, allowing an increase in the detection sensitivity of analyte solutions of five orders of magnitude

    Beyond Charge Transfer: The impact of auger recombination and FRET on PL quenching in an rGO-QDs system

    Get PDF
    PL intensity quenching and the PL lifetime reduction of fluorophores located close to gra‐ phene derivatives are generally explained by charge and energy transfer processes. Analyzing the PL from PbS QDs in rGO/QD systems, we observed a substantial reduction in average PL lifetimes with an increase in rGO content that cannot be interpreted solely by these two processes. To explain the PL lifetime dependence on the rGO/QD component ratio, we propose a model based on the Auger recombination of excitations involving excess holes left in the QDs after the charge transfer process. To validate the model, we conducted additional experiments involving the external engi‐ neering of free charge carriers, which confirmed the role of excess holes as the main QD PL quench‐ ing source. A mathematical simulation of the model demonstrated that the energy transfer between neighboring QDs must also be considered to explain the experimental data carefully. Together, Au‐ ger recombination and energy transfer simulation offers us an excellent fit for the average PL life‐ time dependence on the component ratio of the rGO/QD system
    corecore