9 research outputs found

    Atom-molecule coexistence and collective dynamics near a Feshbach resonance of cold fermions

    Full text link
    Degenerate Fermi gas interacting with molecules near Feshbach resonance is unstable with respect to formation of a mixed state in which atoms and molecules coexist as a coherent superposition. Theory of this state is developed using a mapping to the Dicke model, treating molecular field in the single mode approximation. The results are accurate in the strong coupling regime relevant for current experimental efforts. The exact solution of the Dicke model is exploited to study stability, phase diagram, and nonadiabatic dynamics of molecular field in the mixed state.Comment: 5 pages, 2 figure

    Synchronization in the BCS Pairing Dynamics as a Critical Phenomenon

    Full text link
    Fermi gas with time-dependent pairing interaction hosts several different dynamical states. Coupling between the collective BCS pairing mode and individual Cooper pair states can make the latter either synchronize or dephase. We describe transition from phase-locked undamped oscillations to Landau-damped dephased oscillations in the collisionless, dissipationless regime as a function of coupling strength. In the dephased regime, we find a second transition at which the long-time asymptotic pairing amplitude vanishes. Using a combination of numerical and analytical methods we establish a continuous (type II) character of both transitions

    Time evolution of Matrix Product States

    Full text link
    In this work we develop several new simulation algorithms for 1D many-body quantum mechanical systems combining the Matrix Product State variational ansatz with Taylor, Pade and Arnoldi approximations to the evolution operator. By comparing all methods with previous techniques based on Trotter decompositions we demonstrate that the Arnoldi method is the best one, reaching extremely good accuracy with moderate resources. Finally we apply this algorithm to studying the formation of molecules in an optical lattices when crossing a Feschbach resonance with a cloud of two-species hard-core bosons.Comment: More extensive comparison with all nearest-neighbor spin s=1/2 models. The results in this manuscript have been superseded by a more complete work in cond-mat/061021

    Variational ansatz for the nonlinear Landau-Zener problem for cold atom association

    Full text link
    We present a rigorous analysis of the Landau-Zener linear-in-time term crossing problem for quadratic-nonlinear systems relevant to the coherent association of ultracold atoms in degenerate quantum gases. Our treatment is based on an exact third-order nonlinear differential equation for the molecular state probability. Applying a variational two-term ansatz, we construct a simple approximation that accurately describes the whole-time dynamics of coupled atom-molecular system for any set of involved parameters. Ensuring an absolute error less than for the final transition probability, the resultant solution improves by several orders of magnitude the accuracy of the previous approximations by A. Ishkhanyan et al. developed separately for the weak coupling [J. Phys. A 38, 3505 (2005)] and strong interaction [J. Phys. A 39, 14887 (2006)] limits. In addition, the constructed approximation covers the whole moderate-coupling regime, providing for this intermediate regime the same accuracy as for the two mentioned limits. The obtained results reveal the remarkable observation that for the strong-coupling limit the resonance crossing is mostly governed by the nonlinearity, while the coherent atom-molecular oscillations arising soon after the resonance has been crossed are basically of linear nature. This observation is supposed to be of a general character due to the basic attributes of the resonance crossing processes in the nonlinear quantum systems of the discussed type of involved quadratic nonlinearity

    Quantum quenches from integrability: the fermionic pairing model

    Full text link
    Understanding the non-equilibrium dynamics of extended quantum systems after the trigger of a sudden, global perturbation (quench) represents a daunting challenge, especially in the presence of interactions. The main difficulties stem from both the vanishing time scale of the quench event, which can thus create arbitrarily high energy modes, and its non-local nature, which curtails the utility of local excitation bases. We here show that nonperturbative methods based on integrability can prove sufficiently powerful to completely characterize quantum quenches: we illustrate this using a model of fermions with pairing interactions (Richardson's model). The effects of simple (and multiple) quenches on the dynamics of various important observables are discussed. Many of the features we find are expected to be universal to all kinds of quench situations in atomic physics and condensed matter.Comment: 10 pages, 7 figure

    Quantum Quenches in Extended Systems

    Full text link
    We study in general the time-evolution of correlation functions in a extended quantum system after the quench of a parameter in the hamiltonian. We show that correlation functions in d dimensions can be extracted using methods of boundary critical phenomena in d+1 dimensions. For d=1 this allows to use the powerful tools of conformal field theory in the case of critical evolution. Several results are obtained in generic dimension in the gaussian (mean-field) approximation. These predictions are checked against the real-time evolution of some solvable models that allows also to understand which features are valid beyond the critical evolution. All our findings may be explained in terms of a picture generally valid, whereby quasiparticles, entangled over regions of the order of the correlation length in the initial state, then propagate with a finite speed through the system. Furthermore we show that the long-time results can be interpreted in terms of a generalized Gibbs ensemble. We discuss some open questions and possible future developments.Comment: 24 Pages, 4 figure
    corecore