7 research outputs found

    The POU protein Oct-6 is a nucleocytoplasmic shuttling protein

    Get PDF
    Like many POU domain proteins, Oct-6 plays important roles during vertebrate development. In accord with its function as a transcriptional regulator during neurogenesis and myelination, Oct-6 is predominantly found in the nucleus. Nuclear import is mediated by a nuclear localization signal at the N-terminal end of the POU homeodomain. Here we show, that Oct-6 in addition contains a nuclear export signal so that Oct-6 is able to shuttle constantly between nucleus and cytoplasm. This nuclear export signal is also localized in the POU homeodomain as part of helix 2 and the connecting loop to DNA recognition helix 3. It conforms to the consensus of hydrophobic leucine-rich export sequences and mediates export from the nucleus via CRM1/Exp1. Several amino acid substitutions or insertions that inactivate this nuclear export sequence, reduce DNA-binding of Oct-6 to its octamer recognition element slighty, but interfere strongly with Oct-6-dependent transcriptional activation, thus arguing that nuclear export and nucleocytoplasmic shuttling are essential aspects of Oct-6 function. Importantly, the nuclear export signal identified for Oct-6 is conserved in most, if not all other vertebrate POU proteins. Nuclear export might therefore be of general relevance for POU protein function throughout development

    The role of the proto-oncogene Ski in cortical development

    Get PDF
    The proto-oncogene Ski is an evolutionary conserved protein associated with various cellular processes such as proliferation and differentiation as well as transformation and tumor progression. Ski has been found to interact with various factors such as transcription factors, hormone receptors and different members of transcriptional repressor complexes. Since all these results were obtained in cell lines under overexpression conditions, it is not known yet which interactions Ski is involved under physiological conditions. Ski deficient mice show diverse developmental defects and are perinatal lethal. Even though recent progress has been made in identifying layer and subtype specific genes in the developing cortical plate, little is actually known about their function. In the present work, the endogenous protein Ski is shown to be a new fundamental factor in callosal neuron specification during brain development. In the absence of Ski, misspecified callosal projection neurons largely fail to form the corpus callosum and project instead to subcortical targets. Ski interacts with the chromatin-remodelling factor Satb2 for transcriptional repression of the transcription factor Ctip2. Neither an interaction with Satb2 nor the regulation of Ctip2 by Ski has been reported yet. Here, for the first time an association of Ski with the NURD complex is shown. A proliferation defect and precocious differentiation in the early brain of Ski deficient mice are described. An altered proliferation of the intermediate progenitor population and a timing defect in neurogenesis of deep layer neurons of the cortical plate are also reported. These findings demonstrate a central role for Ski in regulating transcriptional mechanisms of callosal neuron specification. They are of particular relevance in view of the essential role of accurate connectivity and identity of neuronal projections

    Modulating epigenetic mechanisms: the diverse functions of Ski during cortical development

    No full text
    In the developing forebrain, neural stem and progenitor cells generate a large variety of neurons with specific functions in the mature cortex. A central issue is to understand the roles of transcriptional networks and regulatory pathways that control these complex developmental processes. The proto-oncogene Ski is a transcriptional regulator linked to the human 1p36 deletion syndrome, which involves a set of phenotypes including nervous system defects. Ski shows a dynamic expression pattern during cortical development and, accordingly, the phenotype of Ski-deficient cortices is complex, involving altered cell cycle characteristics of neural progenitors, disturbed timing of neurogenesis and mis-specification of projection neurons. Ski is likely to play a role in various pathways by virtue of its ability to interact with a range of signaling molecules, thereby modulating transcriptional activity of corresponding target genes. Ski regulates proliferation and differentiation of various cell types, and more recent data from my laboratory demonstrates that Ski is also involved in the specification of cortical projection neurons. This Point-of-View elucidates the role of Ski as an essential linker between sequence-specific transcription factors and non-DNA binding cofactors with chromatin modifying activities. In particular, it puts forward the hypothesis that the diverse functions of Ski as a co-repressor might be related to its association with distinct HDAC-complexes

    Inactivation of mTORC1 in the Developing Brain Causes Microcephaly and Affects Gliogenesis

    Get PDF
    The mammalian target of rapamycin (mTOR) regulates cell growth in response to various intracellular and extracellular signals. It assembles into two multiprotein complexes: the rapamycin-sensitive mTOR complex 1 (mTORC1) and the rapamycin-insensitive mTORC2. In this study, we inactivated mTORC1 in mice by deleting the gene encoding raptor in the progenitors of the developing CNS. Mice are born but never feed and die within a few hours. The brains deficient for raptor show a microcephaly starting at E17.5 that is the consequence of a reduced cell number and cell size. Changes in cell cycle length during late cortical development and increased cell death both contribute to the reduction in cell number. Neurospheres derived from raptor-deficient brains are smaller, and differentiation of neural progenitors into glia but not into neurons is inhibited. The differentiation defect is paralleled by decreased Stat3 signaling, which is a target of mTORC1 and has been implicated in gliogenesis. Together, our results show that postnatal survival, overall brain growth, and specific aspects of brain development critically depend on mTORC1 function

    Ablation of cdk4 and cdk6 affects proliferation of basal progenitor cells in the developing dorsal and ventral forebrain

    No full text
    Little is known about the molecular players driving proliferation of neural progenitor cells (NPCs) during embryonic mouse development. Here, we demonstrate that proliferation of NPCs in the developing forebrain depends on a particular combination of cell cycle regulators. We have analyzed the requirements for members of the cyclin-dependent kinase (cdk) family using cdk-deficient mice. In the absence of either cdk4 or cdk6, which are both regulators of the G1 phase of the cell cycle, we found no significant effects on the proliferation rate of cortical progenitor cells. However, concomitant loss of cdk4 and cdk6 led to a drastic decrease in the proliferation rate of NPCs, specifically the basal progenitor cells of both the dorsal and ventral forebrain at embryonic day 13.5 (E13.5). Moreover, basal progenitors in the forebrain of Cdk4;Cdk6 double mutant mice exhibited altered cell cycle characteristics. Cdk4;cdk6 deficiency led to an increase in cell cycle length and cell cycle exit of mutant basal progenitor cells in comparison to controls. In contrast, concomitant ablation of cdk2 and cdk6 had no effect on the proliferation of NCPs. Together, our data demonstrate that the expansion of the basal progenitor pool in the developing telencephalon is dependent on the presence of distinct combinations of cdk molecules. Our results provide further evidence for differences in the regulation of proliferation between apical and basal progenitors during cortical development

    Stage-specific requirement for cyclin D1 in glial progenitor cells of the cerebral cortex

    No full text
    Despite the vast abundance of glial progenitor cells in the mouse brain parenchyma, little is known about the molecular mechanisms driving their proliferation in the adult. Here we unravel a critical role of the G1 cell cycle regulator cyclin D1 in controlling cell division of glial cells in the cortical grey matter. We detect cyclin D1 expression in Olig2-immunopositive (Olig2+) oligodendrocyte progenitor cells, as well as in Iba1+ microglia and S100β+ astrocytes in cortices of 3-month-old mice. Analysis of cyclin D1-deficient mice reveals a cell and stage-specific molecular control of cell cycle progression in the various glial lineages. While proliferation of fast dividing Olig2+ cells at early postnatal stages becomes gradually dependent on cyclin D1, this particular G1 regulator is strictly required for the slow divisions of Olig2+/NG2+ oligodendrocyte progenitors in the adult cerebral cortex. Further, we find that the population of mature oligodendrocytes is markedly reduced in the absence of cyclin D1, leading to a significant decrease in the number of myelinated axons in both the prefrontal cortex and the corpus callosum of 8-month-old mutant mice. In contrast, the pool of Iba1+ cells is diminished already at postnatal day 3 in the absence of cyclin D1, while the number of S100β+ astrocytes remains unchanged in the mutant

    Postnatal Schwann cell proliferation but not myelination is strictly and uniquely dependent on cyclin-dependent kinase 4 (cdk4)

    No full text
    Peripheral myelin formation depends on axonal signals that tightly control proliferation and differentiation of the associated Schwann cells. Here we demonstrate that the molecular program controlling proliferation of Schwann cells switches at birth. We have analyzed the requirements for three members of the cyclin-dependent kinase (cdk) family in Schwann cells using cdk-deficient mice. Mice lacking cdk4 showed a drastic decrease in the proliferation rate of Schwann cells at postnatal days 2 and 5, but proliferation was unaffected at embryonic day 18. In contrast, ablation of cdk2 and cdk6 had no significant influence on postnatal Schwann cell proliferation. Taken together, these findings indicate that postnatal Schwann cell proliferation is uniquely controlled by cdk4. Despite the lack of the postnatal wave of Schwann cell proliferation, axons were normally myelinated in adult cdk4-deficient sciatic nerves. Following nerve injury, Schwann cells lacking cdk4 were unable to re-enter the cell cycle, while Schwann cells deficient in cdk2 or cdk6 displayed proliferation rates comparable to controls. We did not observe compensatory effects such as elevated cdk4 levels in uninjured or injured nerves of cdk2 or cdk6-deficient mice. Our data demonstrate that prenatal and postnatal Schwann cell proliferation are driven by distinct molecular cues, and that postnatal proliferation is not a prerequisite for the generation of Schwann cell numbers adequate for correct myelination. (c) 2007 Elsevier Inc. All rights reserved
    corecore