197 research outputs found

    Numerical Simulations on the PSP Rotor Using HMB3

    Get PDF
    This work presents CFD analyses of the isolated Pressure Sensitive Paint (PSP) model rotor blade in hover and forward flight using the structured multi-block CFD solver of Glasgow University. In hover, two blade-tip Mach numbers (0.585 and 0.65) were simulated for a range of blade pitch angles using fully-turbulent flow and the k-ω SST model. Results at blade-tip Mach number of 0.585 showed a fair agreement with experimental Figure of Merit and surface pressure coefficients obtained in the Rotor Test Cell (RTC) at NASA Langley Research Center. Comparisons are presented at blade-tip Mach number of 0.65 in terms of integral blade loads, surface pressure coefficients and position of the tip-vortex cores with published numerical data. Finally, the flow around the PSP rotor in forward flight was also computed at medium thrust (CT =0.006) and results were compared with published experimental data

    Prediction of Helicopter Rotor Hover Performance using High Fidelity CFD Methods

    Get PDF
    No abstract available

    Real Time Wake Computations using Lattice Boltzmann Method on Many Integrated Core Processors

    Get PDF
    This paper puts forward an efficient Lattice Boltzmann method for use as a wake simulator suitable for real-time environments. The method is limited to low speed incompressible flow but is very efficient and can be used to compute flows “on the fly”. In particular, many-core machines allow for the method to be used with the need of very expensive parallel clusters. Results are shown here for flows around cylinders and simple ship shapes

    Real Time Wake Computations using Lattice Boltzmann Method on Many Integrated Core Processors

    Get PDF
    This paper puts forward an efficient Lattice Boltzmann method for use as a wake simulator suitable for real-time environments. The method is limited to low speed incompressible flow but is very efficient and can be used to compute flows “on the fly”. In particular, many-core machines allow for the method to be used with the need of very expensive parallel clusters. Results are shown here for flows around cylinders and simple ship shapes

    Parallel Performance for a Real Time Lattice Boltzmann Code

    Get PDF
    The paper will present the details of a Lattice Boltzmann solver running in real time for unsteady wake computations. In addition to algorithmic implementation, computational results, single core and parallel optimization of the methods are also discussed

    Creating a Database of Helicopter Main Rotor Acoustics for Validation of CFD Methods

    Get PDF
    The work presents recent experiments at the Kazan National Technical University (KNRTU-KAI), related to helicopter acoustics. The objective is to provide a database of near-field experimental data suitable for CFD validation. The obtained set of data corresponds to a Mach-scaled rotor of known planform. An advantage of the current dataset is that direct near-field acoustic data is made available and this allows easy and direct comparisons with CFD predictions, without the need to use far-field aeroacoustic methods

    Helicopter Fuselage Drag ─ Combined Computational Fluid Dynamics and Experimental Studies

    Get PDF
    In this paper, wind tunnel experiments are combined with Computational Fluid Dynamics (CFD) aiming to analyze the aerodynamics of realistic fuselage con¦gurations. A development model of the ANSAT aircraft and an early model of the AKTAI light helicopter were employed. Both models were tested at the subsonic wind tunnel of KNRTU-KAI for a range of Reynolds numbers and pitch and yaw angles. The force balance measurements were complemented by particle image velocimetry (PIV) investigations for the cases where the experimental force measurements showed substantial unsteadiness. The CFD results were found to be in fair agreement with the test data and revealed some §ow separation at the rear of the fuselages. Once con¦dence on the CFD method was established, further modi¦cations were introduced to the ANSAT-like fuselage model to demonstrate drag reduction via small shape changes

    Helicopter Wake Encounters in the Context of RECAT-EU

    Get PDF
    This work presents a first attempt to apply the RECAT-EU (European Wake Turbulence Categorisation and Separation Minima) methodology of fixed-wing aircraft separation to helicopters. The approach is based on a classification of helicopters in categories using their rotor diameter and weight combined with wake comparisons between different classes of fixed-wing aircraft and helicopters. Where necessary the upset caused by a wake encounter to a simple helicopter model is used to establish safe separation distances. The work is based on a very limited amount of data for wake strengths but shows that the principles of the RECAT-EU methodology are directly applicable to helicopters at least for landing and take-off. This research calls for further measurements of helicopter wakes with modern methods so that the suggested separation distances can be further ascertained and ultimately refined allowing for better and safer integration of fixed and rotary-wing traffic at airports

    CAA Modeling of Helicopter Main Rotor in Hover

    Get PDF
    In this work rotor aeroacoustics in hover is considered. Farfield observers are used and the nearfield flow parameters are obtained using the in house HMB and commercial Fluent CFD codes (identical hexa-grids are used for both solvers). Farfield noise at a remote observer position is calculated at post processing stage using FW–H solver implemented in Fluent and HMB. The main rotor of the UH-1H helicopter is considered as a test case for comparison to experimental data. The sound pressure level is estimated for different rotor blade collectives and observation angles

    Tiltrotor CFD part II: aerodynamic optimisation of tiltrotor blades

    Get PDF
    This paper presents aerodynamic optimisation of tiltrotor blades with high-fidelity computational fluid dynamics. The employed optimisation framework is based on a quasi-Newton method, and the required high-fidelity flow gradients were computed using a discrete adjoint solver. Single-point optimisations were first performed, to highlight the contrasting requirements of the helicopter and aeroplane flight regimes. It is then shown how a trade-off blade design can be obtained using a multi-point optimisation strategy. The parametrisation of the blade shape allowed to modify the twist and chord distributions, and to introduce a swept tip. The work shows how these main blade shape parameters influence the optimal performance of the tiltrotor in helicopter and aeroplane modes, and how a compromise blade shape can increase the overall tiltrotor performance. Moreover, in all the presented cases, the accuracy of the adjoint gradients resulted in a small number of flow evaluations for finding the optimal solution, thus indicating gradient-based optimisation as a viable tool for modern tiltrotor design
    • …
    corecore