3,548 research outputs found

    Dispersal and Re-Capture of Marked, Overwintering \u3ci\u3eTomicus Piniperda\u3c/i\u3e (Coleoptera: Scolytidae) From Scotch Pine Bolts

    Get PDF
    The pine shoot beetle (PSB), Tomicus piniperda is a recently established exotic pest of live pine in the southern Great Lakes of the U.S. and Canada. Scotch pine, Pinus sylvestris L. is the most susceptible pine species, but the adult also attacks several other North American species of Pinus. This research investigated the dispersal behavior of beetles emerging from overwintering sites to aid in the development of effective monitoring and management practices. Scotch pine logs with overwintering PSB were sprayed with fluorescent pigments to mark dispersing beetles. These logs were placed in piles in the centers of three circular trap arrays of 8-unit Lindgren traps, baited with a-pinene, and placed at distances of 50, 100,200, 300 and 400 meters from the center along equally spaced radii. An estimated average of 393 PSB, or 23.4% of the overwintering PSB, dispersed from each of three log piles during the initial spring dispersal flight, and 21.9% of these were captured in traps. Traps within 100 meters caught 56.0 to 67.8% of the marked PSB recovered. Most (95.3%) marked PSB were trapped within 400 meters, but 12 beetles (4.7%) were trapped 780-2,000 meters away in adjacent trap arrays. The dispersal pattern of the population, as indicated by trap catch, was to the northeast, in the direction of prevailing westerly/ southerly winds up to 4.77 mls daily average during beetle flight. Regression analysis suggests that the PSB within the experimental area had a predicted dispersal distance of 900 meters in an area that contained numerous traps. Dispersal distances may be greater under of conditions of strong and steady winds or iftraps or abundant host material removed fewer PSB from the dispersing population. The use of traps to monitor specific sites should consider the direction of prevailing winds. Trap catches of wild PSB suggest that optimal inter-trap spacing for efficient detection could be about 78 m

    Positive autoregulation of GDNF levels in the ventral tegmental area mediates long-lasting inhibition of excessive alcohol consumption.

    Get PDF
    Glial cell line-derived neurotrophic factor (GDNF) is an essential growth factor for the survival and maintenance of the midbrain dopaminergic (DA-ergic) neurons. Activation of the GDNF pathway in the ventral tegmental area (VTA), where the GDNF receptors are expressed, produces a long-lasting suppression of excessive alcohol consumption in rats. Previous studies conducted in the DA-ergic-like cells, SHSY5Y, revealed that GDNF positively regulates its own expression, leading to a long-lasting activation of the GDNF signaling pathway. Here we determined whether GDNF activates a positive autoregulatory feedback loop in vivo within the VTA, and if so, whether this mechanism underlies the long-lasting suppressive effects of the growth factor on excessive alcohol consumption. We found that a single infusion of recombinant GDNF (rGDNF; 10 μg) into the VTA induces a long-lasting local increase in GDNF mRNA and protein levels, which depends upon de novo transcription and translation of the polypeptide. Importantly, we report that the GDNF-mediated positive autoregulatory feedback loop accounts for the long-lasting inhibitory actions of GDNF in the VTA on excessive alcohol consumption. Specifically, the long-lasting suppressive effects of a single rGDNF infusion into the VTA on excessive alcohol consumption were prevented when protein synthesis was inhibited, as well as when the upregulation of GDNF expression was prevented using short hairpin RNA to focally knock down GDNF mRNA in the VTA. Our results could have implications for the development of long-lasting treatments for disorders in which GDNF has a beneficial role, including drug addiction, chronic stress and Parkinson's disease

    Secret-Sharing for NP

    Get PDF
    A computational secret-sharing scheme is a method that enables a dealer, that has a secret, to distribute this secret among a set of parties such that a "qualified" subset of parties can efficiently reconstruct the secret while any "unqualified" subset of parties cannot efficiently learn anything about the secret. The collection of "qualified" subsets is defined by a Boolean function. It has been a major open problem to understand which (monotone) functions can be realized by a computational secret-sharing schemes. Yao suggested a method for secret-sharing for any function that has a polynomial-size monotone circuit (a class which is strictly smaller than the class of monotone functions in P). Around 1990 Rudich raised the possibility of obtaining secret-sharing for all monotone functions in NP: In order to reconstruct the secret a set of parties must be "qualified" and provide a witness attesting to this fact. Recently, Garg et al. (STOC 2013) put forward the concept of witness encryption, where the goal is to encrypt a message relative to a statement "x in L" for a language L in NP such that anyone holding a witness to the statement can decrypt the message, however, if x is not in L, then it is computationally hard to decrypt. Garg et al. showed how to construct several cryptographic primitives from witness encryption and gave a candidate construction. One can show that computational secret-sharing implies witness encryption for the same language. Our main result is the converse: we give a construction of a computational secret-sharing scheme for any monotone function in NP assuming witness encryption for NP and one-way functions. As a consequence we get a completeness theorem for secret-sharing: computational secret-sharing scheme for any single monotone NP-complete function implies a computational secret-sharing scheme for every monotone function in NP

    Reduction of quantum noise in optical interferometers using squeezed light

    Full text link
    We study the photon counting noise in optical interferometers used for gravitational wave detection. In order to reduce quantum noise a squeezed vacuum state is injected into the usually unused input port. Here, we specifically investigate the so called `dark port case', when the beam splitter is oriented close to 90{\deg} to the incoming laser beam, such that nearly all photons go to one output port of the interferometer, and only a small fraction of photons is seen in the other port (`dark port'). For this case it had been suggested that signal amplification is possible without concurrent noise amplification [R.Barak and Y.Ben-Aryeh, J.Opt.Soc.Am.B25(361)2008]. We show that by injection of a squeezed vacuum state into the second input port, counting noise is reduced for large values of the squeezing factor, however the signal is not amplified. Signal strength only depends on the intensity of the laser beam.Comment: 8 pages, 1 figur

    Dynamical vs. Auxiliary Fields in Gravitational Waves around a Black Hole

    Full text link
    The auxiliary/dynamic decoupling method of hep-th/0609001 applies to perturbations of any co-homogeneity 1 background (such as a spherically symmetric space-time or a homogeneous cosmology). Here it is applied to compute the perturbations around a Schwarzschild black hole in an arbitrary dimension. The method provides a clear insight for the existence of master equations. The computation is straightforward, coincides with previous results of Regge-Wheeler, Zerilli and Kodama-Ishibashi but does not require any ingenuity in either the definition of variables or in fixing the gauge. We note that the method's emergent master fields are canonically conjugate to the standard ones. In addition, our action approach yields the auxiliary sectors.Comment: 26 page

    Peak cardiac power output and cardiac reserve in sedentary men and women

    Get PDF
    Background and Purpose: Cardiac power output (CPO) and cardiac reserve (CR) are novel parameters of overall cardiac function. The purpose of this study was to determine differences in values of the CPO at rest and peak exercise and CR in sedentary men and women. Material and Methods: Thirty healthy men (age 21.2±0.7 years, body mass 63±6.3 kg, height 168.3±5.1 cm) and thirty healthy women (age 21.3±1.9 years, mass 82.5±7.9 kg, height 181.9±4.9 cm) were included in this study. Echocardiography was used to assess cardiac and hemodynamic parameters. CPO was calculated, at rest and after performed maximal bicycle test, as the product of cardiac output and mean arterial pressure, and CR as the difference of CPO value measured at peak exercise and at rest. Results: At rest, the two groups had similar values of cardiac power output (1.04±0.3W versus 1.14±0.25W, p>0.05). CPO after peak exercise was higher in men (5.1±0.72W versus 3.9±0.58W, p<0.05), as was cardiac reserve (3.96±0.64W versus 2.86±0.44W, p<0.05), respectively. After allometric scaling method was used to decrease the effect of body size on peak CPO, men still had significantly higher peak CPO (2.79±0.4 W m-2 versus 2.46±0.32 W m-2, p<0.05). At peak exercise, a significant positive relationship was found between cardiac power output and end diastolic volume (r=0.60), end diastolic left ventricular internal dimension (r=0.58), stroke volume (r=0.86) and cardiac output (r=0.87). Conclusion: The study showed that men had higher CPO after peak exercise and greater cardiac reserve than women, even after decreasing body size effect

    Chromatin remodeling — a novel strategy to control excessive alcohol drinking

    Get PDF
    Harmful excessive use of alcohol has a severe impact on society and it remains one of the major causes of morbidity and mortality in the population. However, mechanisms that underlie excessive alcohol consumption are still poorly understood, and thus available medications for alcohol use disorders are limited. Here, we report that changing the level of chromatin condensation by affecting DNA methylation or histone acetylation limits excessive alcohol drinking and seeking behaviors in rodents. Specifically, we show that decreasing DNA methylation by inhibiting the activity of DNA methyltransferase (DNMT) with systemic administration of the FDA-approved drug, 5-azacitidine (5-AzaC) prevents excessive alcohol use in mice. Similarly, we find that increasing histone acetylation via systemic treatment with several histone deacetylase (HDAC) inhibitors reduces mice binge-like alcohol drinking. We further report that systemic administration of the FDA-approved HDAC inhibitor, SAHA, inhibits the motivation of rats to seek alcohol. Importantly, the actions of both DNMT and HDAC inhibitors are specific for alcohol, as no changes in saccharin or sucrose intake were observed. In line with these behavioral findings, we demonstrate that excessive alcohol drinking increases DNMT1 levels and reduces histone H4 acetylation in the nucleus accumbens (NAc) of rodents. Together, our findings illustrate that DNA methylation and histone acetylation control the level of excessive alcohol drinking and seeking behaviors in preclinical rodent models. Our study therefore highlights the possibility that DNMT and HDAC inhibitors can be used to treat harmful alcohol abuse

    Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment

    Get PDF
    We present new sulfur and oxygen isotope data in sulfate (δ34SSO4 and δ18OSO4 respectively), from globally distributed marine and estuary pore fluids. We use this data with a model of the biochemical steps involved in bacterial sulfate reduction (BSR) to explore how the slope on a δ18OSO4 vs. δ34SSO4 plot relates to the net sulfate reduction rate (nSRR) across a diverse range of natural environments. Our data demonstrate a correlation between the nSRR and the slope of the relative evolution of oxygen and sulfur isotopes (δ18OSO4 vs. δ34SSO4) in the residual sulfate pool, such that higher nSRR results in a lower slope (sulfur isotopes increase faster relative to oxygen isotopes). We combine these results with previously published literature data to show that this correlation scales over many orders of magnitude of nSRR. Our model of the mechanism of BSR indicates that the critical parameter for the relative evolution of oxygen and sulfur isotopes in sulfate during BSR in natural environments is the rate of intracellular sulfite oxidation. In environments where sulfate reduction is fast, such as estuaries and marginal marine environments, this sulfite reoxidation is minimal, and the δ18OSO4 increases more slowly relative to the δ34SSO4. In contrast, in environments where sulfate reduction is very slow, such as deep sea sediments, our model suggests sulfite reoxidation is far more extensive, with as much as 99% of the sulfate being thus recycled; in these environments the δ18OSO4 increases much more rapidly relative to the δ34SSO4. We speculate that the recycling of sulfite plays a physiological role during BSR, helping maintain microbial activity where the availability of the electron donor (e.g. available organic matter) is low
    corecore