521 research outputs found

    Protein multi-scale organization through graph partitioning and robustness analysis: Application to the myosin-myosin light chain interaction

    Full text link
    Despite the recognized importance of the multi-scale spatio-temporal organization of proteins, most computational tools can only access a limited spectrum of time and spatial scales, thereby ignoring the effects on protein behavior of the intricate coupling between the different scales. Starting from a physico-chemical atomistic network of interactions that encodes the structure of the protein, we introduce a methodology based on multi-scale graph partitioning that can uncover partitions and levels of organization of proteins that span the whole range of scales, revealing biological features occurring at different levels of organization and tracking their effect across scales. Additionally, we introduce a measure of robustness to quantify the relevance of the partitions through the generation of biochemically-motivated surrogate random graph models. We apply the method to four distinct conformations of myosin tail interacting protein, a protein from the molecular motor of the malaria parasite, and study properties that have been experimentally addressed such as the closing mechanism, the presence of conserved clusters, and the identification through computational mutational analysis of key residues for binding.Comment: 13 pages, 7 Postscript figure

    Forage Quality and the Environment

    Get PDF
    The influence of environmental factors on forage quality of temperate and tropical grasses has been reviewed by several authors, who summarized how light, temperature, drought and soil nutrients influence chemical composition, and digestibility of forages grown in contrasting areas of the world. The effects of season of the year on forage growth, grazing behavior and animal performance have also been the subject of numerous papers and reviews. However, there are few recent reviews that summarize how changes in climatic and edaphic factors influence forage quality of legumes with variable levels of condensed tannins (CT), which are important secondary compounds in some temperate and tropical legume species adapted to acid infertile soils. In this paper we summarize properties of CT and their positive and negative effects on forage quality of legumes. We also review published work on the effect of temperature, drought, CO2 concentration, season of the year and soil fertility on the accumulation of CT in temperate and tropical legumes. Results from experiments under controlled conditions indicate that high temperature alone can significantly increase the accumulation of CT in some temperate legume species (i.e. Lotus pedunculatus) but not in others (i.e. L. corniculatus). However, the effect of low or high temperature on accumulation of CT is considerably greater when accompanied with other environmental factors such as drought, high CO2 concentration and soil nutrient deficiencies. Soil nutrient deficiencies can have a major effect on elevation of CT concentration and overall feed value of temperate and tropical legumes, but only when deficiencies are such that they affect plant growth. Soil fertility and climatic conditions affect not only the concentration of CT but also their monomer composition and MW (molecular weight), as was observed in a tropical legume species well adapted to acid infertile soils. The nutritional significance of these findings are not all that well understood, but it would seem that CT in forage legumes are not a uniform chemical entity given that they can change with edaphic and climatic factors. Finally we suggest that there is a need to investigate alternatives to enhance the feed value of legumes with tannins adapted to acid soils through selection of genotypes with less CT and /or through manipulation of environmental factors such as soil fertility. For this we need to better understand how edaphic and climatic factors affect not only accumulation of CT but also their chemical structure and biological activity and relate these changes to forage intake, digestibility, N utilization, and, ultimately, to performance of ruminant animals

    Using network-flow techniques to solve an optimization problem from surface-physics

    Full text link
    The solid-on-solid model provides a commonly used framework for the description of surfaces. In the last years it has been extended in order to investigate the effect of defects in the bulk on the roughness of the surface. The determination of the ground state of this model leads to a combinatorial problem, which is reduced to an uncapacitated, convex minimum-circulation problem. We will show that the successive shortest path algorithm solves the problem in polynomial time.Comment: 8 Pages LaTeX, using Elsevier preprint style (macros included

    Condensed Tannins in Tropical Legumes: Concentration, Astringency and Effects on the Nutrition of Ruminants

    Get PDF
    A feeding trial was carried out to determine the effect of extractable condensed tannins (ECT) concentration and tannin astringency in tropical legumes on nitrogen (N) digestion by sheep. Test legumes were Desmodium ovalifolium (Do) and Flemingia macrophylla (Fm) which had similar concentrations of Extractable CT (9% DM) but tannins with different degree of astringency (Do, 0.6 and Fm, 0.3 g protein bound/g of ECT). Chopped sun-dried forage of each legume was sprayed with either water (control) or polyethylene glycol (PEG, 3.5% DM) to reduce ECT and fed to 8 sheep with ruminal and duodenal canulas arranged in a replicated 4 x 4 Latin Square changeover design. Greater (P\u3c0.05) N flow to duodenum, and fecal N were observed with Fm than with Do. Estimates of escape N were similar (58 to 61%) for both legumes. Reduction of ECT with PEG in both legumes (9.0-9.4 to 4.7-5.4%) resulted in lower (P\u3c0.05) proportion of N reaching the duodenum. Results indicate that concentration of ECT had a greater effect on N digestion by sheep than tannin astringency

    Encoding dynamics for multiscale community detection: Markov time sweeping for the Map equation

    Get PDF
    The detection of community structure in networks is intimately related to finding a concise description of the network in terms of its modules. This notion has been recently exploited by the Map equation formalism (M. Rosvall and C.T. Bergstrom, PNAS, 105(4), pp.1118--1123, 2008) through an information-theoretic description of the process of coding inter- and intra-community transitions of a random walker in the network at stationarity. However, a thorough study of the relationship between the full Markov dynamics and the coding mechanism is still lacking. We show here that the original Map coding scheme, which is both block-averaged and one-step, neglects the internal structure of the communities and introduces an upper scale, the `field-of-view' limit, in the communities it can detect. As a consequence, Map is well tuned to detect clique-like communities but can lead to undesirable overpartitioning when communities are far from clique-like. We show that a signature of this behavior is a large compression gap: the Map description length is far from its ideal limit. To address this issue, we propose a simple dynamic approach that introduces time explicitly into the Map coding through the analysis of the weighted adjacency matrix of the time-dependent multistep transition matrix of the Markov process. The resulting Markov time sweeping induces a dynamical zooming across scales that can reveal (potentially multiscale) community structure above the field-of-view limit, with the relevant partitions indicated by a small compression gap.Comment: 10 pages, 6 figure

    Comparative study of relationship between bruxism and decrease telomeres length

    Get PDF
    Poster presented at the First International Congress of CiiEM - From Basic Sciences To Clinical Research. Egas Moniz, Caparica, Portugal, 27-28 November 201

    Linear models of activation cascades: analytical solutions and coarse-graining of delayed signal transduction

    Get PDF
    Cellular signal transduction usually involves activation cascades, the sequential activation of a series of proteins following the reception of an input signal. Here we study the classic model of weakly activated cascades and obtain analytical solutions for a variety of inputs. We show that in the special but important case of optimal-gain cascades (i.e., when the deactivation rates are identical) the downstream output of the cascade can be represented exactly as a lumped nonlinear module containing an incomplete gamma function with real parameters that depend on the rates and length of the cascade, as well as parameters of the input signal. The expressions obtained can be applied to the non-identical case when the deactivation rates are random to capture the variability in the cascade outputs. We also show that cascades can be rearranged so that blocks with similar rates can be lumped and represented through our nonlinear modules. Our results can be used both to represent cascades in computational models of differential equations and to fit data efficiently, by reducing the number of equations and parameters involved. In particular, the length of the cascade appears as a real-valued parameter and can thus be fitted in the same manner as Hill coefficients. Finally, we show how the obtained nonlinear modules can be used instead of delay differential equations to model delays in signal transduction.Comment: 18 pages, 7 figure

    Discriminating dynamical from additive noise in the Van der Pol oscillator

    Full text link
    We address the distinction between dynamical and additive noise in time series analysis by making a joint evaluation of both the statistical continuity of the series and the statistical differentiability of the reconstructed measure. Low levels of the latter and high levels of the former indicate the presence of dynamical noise only, while low values of the two are observed as soon as additive noise contaminates the signal. The method is presented through the example of the Van der Pol oscillator, but is expected to be of general validity for continuous-time systems.Comment: 12 pages (Elsevier LaTeX class), 4 EPS figures, submitted to Physica D (4 july 2001

    Flow graphs: interweaving dynamics and structure

    Get PDF
    The behavior of complex systems is determined not only by the topological organization of their interconnections but also by the dynamical processes taking place among their constituents. A faithful modeling of the dynamics is essential because different dynamical processes may be affected very differently by network topology. A full characterization of such systems thus requires a formalization that encompasses both aspects simultaneously, rather than relying only on the topological adjacency matrix. To achieve this, we introduce the concept of flow graphs, namely weighted networks where dynamical flows are embedded into the link weights. Flow graphs provide an integrated representation of the structure and dynamics of the system, which can then be analyzed with standard tools from network theory. Conversely, a structural network feature of our choice can also be used as the basis for the construction of a flow graph that will then encompass a dynamics biased by such a feature. We illustrate the ideas by focusing on the mathematical properties of generic linear processes on complex networks that can be represented as biased random walks and also explore their dual consensus dynamics.Comment: 4 pages, 1 figur

    Stability of a neural network model with small-world connections

    Full text link
    Small-world networks are highly clustered networks with small distances among the nodes. There are many biological neural networks that present this kind of connections. There are no special weightings in the connections of most existing small-world network models. However, this kind of simply-connected models cannot characterize biological neural networks, in which there are different weights in synaptic connections. In this paper, we present a neural network model with weighted small-world connections, and further investigate the stability of this model.Comment: 4 pages, 3 figure
    • …
    corecore