9 research outputs found

    Gaseous Mercury Exchange from Water-Air Interface in Differently Impacted Freshwater Environments

    Get PDF
    Gaseous exchanges of mercury (Hg) at the water-air interface in contaminated sites strongly influence its fate in the environment. In this study, diurnal gaseous Hg exchanges were seasonally evaluated by means of a floating flux chamber in two freshwater environments impacted by anthropogenic sources of Hg, specifically historical mining activity (Solkan Reservoir, Slovenia) and the chlor-alkali industry (Torviscosa dockyard, Italy), and in a pristine site, Cavazzo Lake (Italy). The highest fluxes (21.88 Âą 11.55 ng m-2 h-1) were observed at Solkan, coupled with high dissolved gaseous mercury (DGM) and dissolved Hg (THgD) concentrations. Conversely, low vertical mixing and saltwater intrusion at Torviscosa limited Hg mobility through the water column, with higher Hg concentrations in the deep layer near the contaminated sediments. Consequently, both DGM and THgD in surface water were generally lower at Torviscosa than at Solkan, resulting in lower fluxes (19.01 Âą 12.65 ng m-2 h-1). However, at this site, evasion may also be limited by high atmospheric Hg levels related to dispersion of emissions from the nearby chlor-alkali plant. Surprisingly, comparable fluxes (15.56 Âą 12.78 ng m-2 h-1) and Hg levels in water were observed at Cavazzo, suggesting a previously unidentified Hg input (atmospheric depositions or local geology). Overall, at all sites the fluxes were higher in the summer and correlated to incident UV radiation and water temperature due to enhanced photo production and diffusivity of DGM, the concentrations of which roughly followed the same seasonal trend

    Two-year monitoring of water hydrochemistry in a Pb-Zn Mississippi Valley-Type mine (MVT) in the Southeastern Alps (Raibl, Friuli Venezia Giulia)

    Get PDF
    The recent and past mining activities are among the main anthropic sources of dispersion of potentially toxic trace elements (PTEs) in the environment. In this study, a two year monitoring of different water bodies in a decommissioned mining site located in the Southeastern Alps (Friuli Venezia Giulia, Raibl mine) was performed. Results have allowed to provide a characterisation of the hydrogeochemistry, the chemical signatures and the temporal-spatial variations of PTEs in a carbonate-hosted Pb-Zn Mississippi Valley-Type (MVT) mine, where no acid mine drainages (AMD) occur. Besides mineralogy and pH-Eh conditions, strong rainfalls and high-flow events are the main factors affecting the temporal variability of dissolved PTEs, promoting their dissolution and dispersion. Anomalous concentrations of trace metals (Zn, Pb, Tl) were found in near neutral pH-buffered groundwaters entrapped in tailings impoundments, whereas concentrations of metalloids (As, Sb and Ge) were more abundant in low-flow water drainage from mine adits. High concentrations of Tl were found in the saturated area of the tailings impoundments, related to relatively lower pH and sulfate ions contents, thus suggesting Tl-bearing pyrite/marcasite oxidation. At the same time, low concentrations of dissolved Ge and Cd in groundwaters entrapped in tailings are possibly associated to sphalerite-depleted post-flotation tailings. Based on chemical data, modeling and literature, attenuation processes of dissolved PTEs (mainly Pb) are mainly attributed to sorption onto Fe-oxy-hydroxides, which is pH-dependent, and precipitation of mineral phases (e.g., dissolved Zn to hydrozincite: Zn5(CO3)2(OH)6). The Tl/Zn and Tl/Pb ratios show that enrichments occur without notable attenuation inside the tailings impoundments, possibly indicating that Tl attenuation needs higher pH to effectively promote adsorption onto Fe-oxy-hydroxides, as, conversely, occurs in the Rio del Lago stream waters

    Correction to: Concentration of mercury in human hair and associated factors in residents of the Gulf of Trieste (North‑Eastern Italy)

    Get PDF
    The Gulf of Trieste (Northern Adriatic Sea, Italy) is the coastal area of the Mediterranean Sea most highly contaminated by mercury (Hg) due to fluvial inputs from the Isonzo/Soča River system, draining over 500 years’ worth of cinnabar extraction activity from the Idrija mining district (Western Slovenia). The aim of this research is to investigate the concentration of Hg in hair samples taken from the general population of the Friuli Venezia Giulia (FVG) Region coastal area, as a marker of chronic exposure to Hg. Three hundred and one individuals — 119 males and 182 females — were recruited by convenience sampling in Trieste in September 2021. An amount of approximately 100 mg of hair was collected from the occipital scalp of each participant to measure the respective Hg concentrations (expressed as mg/kg). Moreover, participants completed a self-report questionnaire collecting extensive socio-demographic and life-style information. A multiple linear regression analysis was employed to investigate factors associated with increased levels of Hg concentration in hair. A mean Hg concentration in hair of 1.63 mg/kg was found, slightly above the 1.0 mg/kg threshold recommended by the WHO for pregnant women and children, although still well below the no observed adverse effects level (NOAEL) of 10 mg/kg. Among respondents, 55.6% showed a Hg concentration in hair > 1 mg/kg, 22.9% > 2 mg/kg, and 2 participants exhibited Hg levels > 10 mg/kg. The adjusted mean hair Hg level increased in those subjects who reported a preference for shellfish/crayfish/mollusks (RC = 0.35; 95%CI: 0.16; 0.55), whereas it decreased in those who reported a preference for frozen fish (RC = -0.23; 95%CI: − 0.39; − 0.06). Though a risk alert for Hg exposure for coastal residents from FVG is deemed unnecessary at this time, it is recommended that pregnant women limit their ingestion of locally caught fish to < 4 servings/month

    Concentration of mercury in human hair and associated factors in residents of the Gulf of Trieste (North-Eastern Italy)

    Get PDF
    The Gulf of Trieste (Northern Adriatic Sea, Italy) is the coastal area of the Mediterranean Sea most highly contaminated by mercury (Hg) due to fluvial inputs from the Isonzo/Soca River system, draining over 500 years' worth of cinnabar extraction activity from the Idrija mining district (Western Slovenia). The aim of this research is to investigate the concentration of Hg in hair samples taken from the general population of the Friuli Venezia Giulia (FVG) Region coastal area, as a marker of chronic exposure to Hg. Three hundred and one individuals - 119 males and 182 females - were recruited by convenience sampling in Trieste in September 2021. An amount of approximately 100 mg of hair was collected from the occipital scalp of each participant to measure the respective Hg concentrations (expressed as mg/kg). Moreover, participants completed a self-report questionnaire collecting extensive socio-demographic and life-style information. A multiple linear regression analysis was employed to investigate factors associated with increased levels of Hg concentration in hair. A mean Hg concentration in hair of 1.63 mg/kg was found, slightly above the 1.0 mg/kg threshold recommended by the WHO for pregnant women and children, although still well below the no observed adverse effects level (NOAEL) of 10 mg/kg. Among respondents, 55.6% showed a Hg concentration in hair > 1 mg/kg, 22.9% > 2 mg/kg, and 2 participants exhibited Hg levels > 10 mg/kg. The adjusted mean hair Hg level increased in those subjects who reported a preference for shellfish/crayfish/mollusks (RC = 0.35; 95%CI: 0.16; 0.55), whereas it decreased in those who reported a preference for frozen fish (RC = -0.23; 95%CI: - 0.39; - 0.06). Though a risk alert for Hg exposure for coastal residents from FVG is deemed unnecessary at this time, it is recommended that pregnant women limit their ingestion of locally caught fish to < 4 servings/month

    Portable X-ray Fluorescence (pXRF) as a Tool for Environmental Characterisation and Management of Mining Wastes: Benefits and Limits

    Get PDF
    Portable X-ray fluorescence (pXRF) is one of the main geochemical techniques employed in multi-elemental analysis screening for contaminated sites management. As the confidence of pXRF analyses are matrix-specific, efforts are made to provide studies of pXRF quality on different geochemical datasets, focusing on less investigated elements such as mercury (Hg) and antimony (Sb), to help both new and experienced users. The analysis of environmental solid samples from two decommissioned mining sites in NE Italy, characterised by Pb-Zn and (Hg-rich) Cu-Sb ore deposits, were prepared with two different protocols and compared with traditional destructive analyses. Sample composition was found strictly dependent to the occurrence of false positives and overestimation at low concentrations. In contrast, milling the sample did not produce major variations in the overall quality. Lead (Pb), Sb, and Zn reached the definitive data quality in at least one of the two datasets. Consequently, as far as a thorough QA/QC protocol is followed, pXRF can rapidly produce chemical data that is as accurate as that produced by destructive standard laboratory techniques, thus allowing to identify potential sources of contamination that could be reprocessed for the extraction of valuable elements and mitigating the dispersion of contaminants and ecological or health risks

    Prediction of Trace Metal Distribution in a Tailings Impoundment Using an Integrated Geophysical and Geochemical Approach (Raibl Mine, Pb-Zn Alpine District, Northern Italy)

    No full text
    When mines are decommissioned, tailings piles can act as sources of contamination for decades or even centuries. Tailings, which usually contain high concentrations of metals and trace elements, can be reprocessed for a secondary recovery of valuable elements with an innovative approach to a circular economy. This study offers new results for tailings ponds characterisation and chemical content prediction based on an integrated geophysical-geochemical approach. The study of the Raibl Pb-Zn tailings impoundment was done using bulk chemical analysis on borehole samples, Electrical Resistivity Tomography surveys, and Ground Penetrating Radar measurements. We found valuable and statistically significant correlations between the electrical resistivity of the mining impoundments and the metal distribution, thus providing a practical opportunity to characterise large volumes of metal-bearing tailings. In particular, these results can be useful to aid in the development of environmental monitoring programs for remediation purposes or to implement economic secondary recovery plans

    Expanded Glass for Thermal and Acoustic Insulation from Recycled Post-Consumer Glass and Textile Industry Process Waste

    Get PDF
    The production of glass foams obtained by recycling post-consumer glass and textile industry processing waste is presented. The mechanical, thermal and acoustic properties were characterized as a function of process temperature and time. The results showed that it is possible to produce glass foams with thermal and acoustic insulation properties from a mixture consisting of 96.5% of glass waste, 1% of textile waste and 2.5% of manganese dioxide, processed at temperatures between 800 and 900 °C for a time between 30 and 90 min. The samples had density in the range of 200–300 kg m−3, porosity of 87–92%, thermal conductivity of 85–105 mW m−1 K−1, noise-reducing factors of 0.15–0.40 and compressive strength of 1.2–3.0 MPa. Although their insulation performance was not as outstanding as that of polymer foams, these materials can emerge as competitive candidates for applications requiring non-flammability and high-temperature load bearing capacity in combination with low weight, mechanical strength, and thermal and acoustic insulation properties. The use of secondary raw materials (which accounted for 97.5% by weight of the synthetic blend) limits the energy required compared to that needed for the extraction, transportation and processing of primary raw materials, making these foams attractive also in terms of environmental footprint

    Spatial and Temporal Trends of Gaseous Elemental Mercury over a Highly Impacted Coastal Environment (Northern Adriatic, Italy)

    No full text
    Mercury (Hg) is a global pollutant, being highly persistent in the atmosphere, in particular gaseous elemental mercury (GEM), which can easily be emitted and then transported over long distances. In the Gulf of Trieste (northern Adriatic Sea, Italy), contamination by Hg is well characterised but little is known regarding the concentrations, sources and fate of GEM in the atmosphere. In this work, discrete measurements of GEM were recorded from several sites at different times of the year. The database is consistent with temporal night-day variations monitored using a continuous real-time device. The meteorological conditions were collected as ancillary parameters. GEM levels varied from &lt;LOD (2.0 ng m&minus;3) to 48.5 ng m&minus;3 (mean 2.7 ng m&minus;3), with no significant differences found among sites. A clear daily pattern emerged, with maximum values reached just after sunset. Air temperature, relative humidity, wind speed and direction were identified as the main micrometeorological factors influencing both the spatial and temporal variation of GEM. Our results show that average atmospheric GEM values are higher than the natural background of the Northern Hemisphere and will be useful in future selection regarding the most suitable sites to monitor atmospheric Hg depositions and fluxes from soil and water

    Portable X-ray Fluorescence (pXRF) as a Tool for Environmental Characterisation and Management of Mining Wastes: Benefits and Limits

    No full text
    Portable X-ray fluorescence (pXRF) is one of the main geochemical techniques employed in multi-elemental analysis screening for contaminated sites management. As the confidence of pXRF analyses are matrix-specific, efforts are made to provide studies of pXRF quality on different geochemical datasets, focusing on less investigated elements such as mercury (Hg) and antimony (Sb), to help both new and experienced users. The analysis of environmental solid samples from two decommissioned mining sites in NE Italy, characterised by Pb-Zn and (Hg-rich) Cu-Sb ore deposits, were prepared with two different protocols and compared with traditional destructive analyses. Sample composition was found strictly dependent to the occurrence of false positives and overestimation at low concentrations. In contrast, milling the sample did not produce major variations in the overall quality. Lead (Pb), Sb, and Zn reached the definitive data quality in at least one of the two datasets. Consequently, as far as a thorough QA/QC protocol is followed, pXRF can rapidly produce chemical data that is as accurate as that produced by destructive standard laboratory techniques, thus allowing to identify potential sources of contamination that could be reprocessed for the extraction of valuable elements and mitigating the dispersion of contaminants and ecological or health risks
    corecore