84 research outputs found

    Multiple FadD Acyl-CoA Synthetases Contribute to Differential Fatty Acid Degradation and Virulence in Pseudomonas aeruginosa

    Get PDF
    A close interconnection between nutrient metabolism and virulence factor expression contributes to the pathophysiology of Pseudomonas aeruginosa as a successful pathogen. P. aeruginosa fatty acid (FA) degradation is complicated with multiple acyl-CoA synthetase homologs (FadDs) expressed in vivo in lung tissue during cystic fibrosis infections. The promoters of two genetically linked P. aeruginosa fadD genes (fadD1 and fadD2) were mapped and northern blot analysis indicated they could exist on two different transcripts. These FadDs contain ATP/AMP signature and FA-binding motifs highly homologous to those of the Escherichia coli FadD. Upon introduction into an E. coli fadD-/fadR- double mutant, both P. aeruginosa fadDs functionally complemented the E. coli fadD-/fadR- mutant, allowing degradation of different chain-length FAs. Chromosomal mutagenesis, growth analysis, induction studies, and determination of kinetic parameters suggested that FadD1 has a substrate preference for long-chain FAs while FadD2 prefers shorter-chain FAs. When compared to the wild type strain, the fadD2 mutant exhibited decreased production of lipase, protease, rhamnolipid and phospholipase, and retardation of both swimming and swarming motilities. Interestingly, fadD1 mutant showed only increased swarming motility. Growth analysis of the fadD mutants showed noticeable deficiencies in utilizing FAs and phosphatidylcholine (major components of lung surfactant) as the sole carbon source. This defect translated into decreased in vivo fitness of P. aeruginosa in a BALB/c mouse lung infection model, supporting the role of lipids as a significant nutrient source for this bacterium in vivo

    Regulation of intracellular free arachidonic acid in Aplysia nervous system

    Full text link
    We have studied the regulation of arachidonic acid (AA) uptake, metabolism, and release in Aplysia nervous system. Following uptake of [ 3 H]AA, the distribution of radioactivity in intracellular and extracellular lipid pools was measured as a function of time in the presence or absence of exogenous AA. The greatest amount of AA was esterified into phosphatidylinositol (relative to pool size). We found that the intracellular free AA pool underwent rapid turnover, and that radioactive free AA and eicosanoids were released at a rapid rate into the extracellular medium, both in the presence and absence of exogenous AA. Most of the released radioactivity originated from phosphatidylinositol.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48020/1/232_2005_Article_BF01868464.pd
    corecore