90 research outputs found
Sinusoidal electromagnon in RMnO3: Indication of anomalous magnetoelectric coupling
The optical spectra in the family of multiferroic manganites RMnO3 is a great
puzzle. Current models can not explain the fact that two strong electromagnons
are present in the non-collinear spin cycloidal phase, with only one
electromagnon surviving the transition into the collinear spin sinusoidal
phase. We show that this is a signature of the presence of anomalous
magnetoelectric coupling that breaks rotational invariance in spin space and
generates oscillatory polarization in the ground state.Comment: 5 pages, 2 figure
Dynamical magnetoelectric effects in multiferroic oxides
Multiferroics with coexistent ferroelectric and magnetic orders can provide
an interesting laboratory to test unprecedented magnetoelectric responses and
their possible applications. One such example is the dynamical and/or resonant
coupling between magnetic and electric dipoles in a solid. As the examples of
such dynamical magnetoelectric effects, (1) the multiferroic domain wall
dynamics and (2) the electric-dipole active magnetic responses are discussed
with the overview of recent experimental observations.Comment: 15 pages including 6 figures; Accepted for publication in Phil.
Trans. A Roy. Soc. (Special issue, Spin on Electronics
Inhomogeneous Magnetoelectric Effect on Defect in Multiferroic Material: Symmetry Prediction
Inhomogeneous magnetoelectric effect in magnetization distribution
heterogeneities (0-degree domain walls) appeared on crystal lattice defect of
the multiferroic material has been investigated. Magnetic symmetry based
predictions of kind of electrical polarization distribution in their volumes
were used. It was found that magnetization distribution heterogeneity with any
symmetry produces electrical polarization. Results were systemized in scope of
micromagnetic structure chirality. It was shown that all 0-degree domain walls
with time-noninvariant chirality have identical type of spatial distribution of
the magnetization and polarization.Comment: submitted to IOP Conference Series: Materials Science and Engineerin
Nonlocal feedback in ferromagnetic resonance
Ferromagnetic resonance in thin films is analyzed under the influence of
spatiotemporal feedback effects. The equation of motion for the magnetization
dynamics is nonlocal in both space and time and includes isotropic, anisotropic
and dipolar energy contributions as well as the conserved Gilbert- and the
non-conserved Bloch-damping. We derive an analytical expression for the
peak-to-peak linewidth. It consists of four separate parts originated by
Gilbert damping, Bloch-damping, a mixed Gilbert-Bloch component and a
contribution arising from retardation. In an intermediate frequency regime the
results are comparable with the commonly used Landau-Lifshitz-Gilbert theory
combined with two-magnon processes. Retardation effects together with Gilbert
damping lead to a linewidth the frequency dependence of which becomes strongly
nonlinear. The relevance and the applicability of our approach to ferromagnetic
resonance experiments is discussed.Comment: 22 pages, 9 figure
Thermodynamically self-consistent non-stochastic micromagnetic model for the ferromagnetic state
In this work, a self-consistent thermodynamic approach to micromagnetism is
presented. The magnetic degrees of freedom are modeled using the
Landau-Lifshitz-Baryakhtar theory, that separates the different contributions
to the magnetic damping, and thereby allows them to be coupled to the electron
and phonon systems in a self-consistent way. We show that this model can
quantitatively reproduce ultrafast magnetization dynamics in Nickel.Comment: 5 pages, 3 figure
First- and second-order transitions of the escape rate in ferrimagnetic or antiferromagnetic particles
Quantum-classical escape-rate transition has been studied for two general
forms of magnetic anisotropy in ferrimagnetic or antiferromagnetic particles.
It is found that the range of the first-order transition is greatly reduced as
the system becomes ferrimagnetic and there is no first-order transition in
almost compensated antiferromagnetic particles. These features can be tested
experimentally in nanomagnets like molecular magnets.Comment: 11 pages, 3 figures, to appear in Europhys. Let
Fokker-Planck and Landau-Lifshitz-Bloch Equations for Classical Ferromagnets
A macroscopic equation of motion for the magnetization of a ferromagnet at
elevated temperatures should contain both transverse and longitudinal
relaxation terms and interpolate between Landau-Lifshitz equation at low
temperatures and the Bloch equation at high temperatures. It is shown that for
the classical model where spin-bath interactions are described by stochastic
Langevin fields and spin-spin interactions are treated within the mean-field
approximation (MFA), such a ``Landau-Lifshitz-Bloch'' (LLB) equation can be
derived exactly from the Fokker-Planck equation, if the external conditions
change slowly enough. For weakly anisotropic ferromagnets within the MFA the
LLB equation can be written in a macroscopic form based on the free-energy
functional interpolating between the Landau free energy near T_C and the
``micromagnetic'' free energy, which neglects changes of the magnetization
magnitude |{\bf M}|, at low temperatures.Comment: 9 pages, no figures, a small error correcte
- …