13 research outputs found

    Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI

    Get PDF
    BACKGROUND: Coronary revascularization guided by fractional flow reserve (FFR) is associated with better patient outcomes after the procedure than revascularization guided by angiography alone. It is unknown whether the instantaneous wave-free ratio (iFR), an alternative measure that does not require the administration of adenosine, will offer benefits similar to those of FFR. METHODS: We randomly assigned 2492 patients with coronary artery disease, in a 1:1 ratio, to undergo either iFR-guided or FFR-guided coronary revascularization. The primary end point was the 1-year risk of major adverse cardiac events, which were a composite of death from any cause, nonfatal myocardial infarction, or unplanned revascularization. The trial was designed to show the noninferiority of iFR to FFR, with a margin of 3.4 percentage points for the difference in risk. RESULTS: At 1 year, the primary end point had occurred in 78 of 1148 patients (6.8%) in the iFR group and in 83 of 1182 patients (7.0%) in the FFR group (difference in risk, -0.2 percentage points; 95% confidence interval [CI], -2.3 to 1.8; P<0.001 for noninferiority; hazard ratio, 0.95; 95% CI, 0.68 to 1.33; P=0.78). The risk of each component of the primary end point and of death from cardiovascular or noncardiovascular causes did not differ significantly between the groups. The number of patients who had adverse procedural symptoms and clinical signs was significantly lower in the iFR group than in the FFR group (39 patients [3.1%] vs. 385 patients [30.8%], P<0.001), and the median procedural time was significantly shorter (40.5 minutes vs. 45.0 minutes, P=0.001). CONCLUSIONS: Coronary revascularization guided by iFR was noninferior to revascularization guided by FFR with respect to the risk of major adverse cardiac events at 1 year. The rate of adverse procedural signs and symptoms was lower and the procedural time was shorter with iFR than with FFR. (Funded by Philips Volcano; DEFINE-FLAIR ClinicalTrials.gov number, NCT02053038 .)info:eu-repo/semantics/publishedVersio

    The Multi-center Evaluation of the Accuracy of the Contrast MEdium INduced Pd/Pa RaTiO in Predicting FFR (MEMENTO-FFR) Study.

    Get PDF
    AIMS: Adenosine administration is needed for the achievement of maximal hyperaemia fractional flow reserve (FFR) assessment. The objective was to test the accuracy of Pd/Pa ratio registered during submaximal hyperaemia induced by non-ionic contrast medium (contrast FFR [cFFR]) in predicting FFR and comparing it to the performance of resting Pd/Pa in a collaborative registry of 926 patients enrolled in 10 hospitals from four European countries (Italy, Spain, France and Portugal). METHODS AND RESULTS: Resting Pd/Pa, cFFR and FFR were measured in 1,026 coronary stenoses functionally evaluated using commercially available pressure wires. cFFR was obtained after intracoronary injection of contrast medium, while FFR was measured after administration of adenosine. Resting Pd/Pa and cFFR were significantly higher than FFR (0.93±0.05 vs. 0.87±0.08 vs. 0.84±0.08, p<0.001). A strong correlation and a close agreement at Bland-Altman analysis between cFFR and FFR were observed (r=0.90, p<0.001 and 95% CI of disagreement: from -0.042 to 0.11). ROC curve analysis showed an excellent accuracy (89%) of the cFFR cut-off of ≤0.85 in predicting an FFR value ≤0.80 (AUC 0.95 [95% CI: 0.94-0.96]), significantly better than that observed using resting Pd/Pa (AUC: 0.90, 95% CI: 0.88-0.91; p<0.001). A cFFR/FFR hybrid approach showed a significantly lower number of lesions requiring adenosine than a resting Pd/Pa/FFR hybrid approach (22% vs. 44%, p<0.0001). CONCLUSIONS: cFFR is accurate in predicting the functional significance of coronary stenosis. This could allow limiting the use of adenosine to obtain FFR to a minority of stenoses with considerable savings of time and costs.info:eu-repo/semantics/publishedVersio

    Safety of the Deferral of Coronary Revascularization on the Basis of Instantaneous Wave-Free Ratio and Fractional Flow Reserve Measurements in Stable Coronary Artery Disease and Acute Coronary Syndromes.

    Get PDF
    OBJECTIVES: The aim of this study was to investigate the clinical outcomes of patients deferred from coronary revascularization on the basis of instantaneous wave-free ratio (iFR) or fractional flow reserve (FFR) measurements in stable angina pectoris (SAP) and acute coronary syndromes (ACS). BACKGROUND: Assessment of coronary stenosis severity with pressure guidewires is recommended to determine the need for myocardial revascularization. METHODS: The safety of deferral of coronary revascularization in the pooled per-protocol population (n = 4,486) of the DEFINE-FLAIR (Functional Lesion Assessment of Intermediate Stenosis to Guide Revascularisation) and iFR-SWEDEHEART (Instantaneous Wave-Free Ratio Versus Fractional Flow Reserve in Patients With Stable Angina Pectoris or Acute Coronary Syndrome) randomized clinical trials was investigated. Patients were stratified according to revascularization decision making on the basis of iFR or FFR and to clinical presentation (SAP or ACS). The primary endpoint was major adverse cardiac events (MACE), defined as the composite of all-cause death, nonfatal myocardial infarction, or unplanned revascularization at 1 year. RESULTS: Coronary revascularization was deferred in 2,130 patients. Deferral was performed in 1,117 patients (50%) in the iFR group and 1,013 patients (45%) in the FFR group (p < 0.01). At 1 year, the MACE rate in the deferred population was similar between the iFR and FFR groups (4.12% vs. 4.05%; fully adjusted hazard ratio: 1.13; 95% confidence interval: 0.72 to 1.79; p = 0.60). A clinical presentation with ACS was associated with a higher MACE rate compared with SAP in deferred patients (5.91% vs. 3.64% in ACS and SAP, respectively; fully adjusted hazard ratio: 0.61 in favor of SAP; 95% confidence interval: 0.38 to 0.99; p = 0.04). CONCLUSIONS: Overall, deferral of revascularization is equally safe with both iFR and FFR, with a low MACE rate of about 4%. Lesions were more frequently deferred when iFR was used to assess physiological significance. In deferred patients presenting with ACS, the event rate was significantly increased compared with SAP at 1 year.info:eu-repo/semantics/publishedVersio

    Instantaneous wave-free ratio cutoff values for nonculprit stenosis classification in patients with ST-segment elevation myocardial infarction (an iSTEMI substudy).

    No full text
    An iSTEMI substudyOBJECTIVES: The instantaneous wave-free ratio cutoff value of <0.90 for hemodynamic significance of coronary stenoses has been validated in stable patients. We examined different cutoff values in the evaluation of nonculprit stenoses in patients with ST-segment elevation myocardial infarction. METHODS: We measured instantaneous wave-free ratio across nonculprit stenoses in the acute setting and at follow-up in 120 patients with ST-segment elevation myocardial infarction and 157 nonculprit stenoses, of which, 113 patients with 147 nonculprit stenoses completed follow-up. METHODS: The prevalence of nonculprit stenosis hemodynamic significance was 52% in the acute setting and 41% at follow-up. With follow-up, instantaneous wave-free ratio as reference, acute instantaneous wave-free ratio >0.90 had a negative predictive value of 89%. Acute instantaneous wave-free ratio 0.93 had a negative predictive value of 100%. Acute instantaneous wave-free ratio <0.86 and <0.83 had positive predictive values of 71 and 77%. Using acute instantaneous wave-free ratio <0.90 as cutoff for hemodynamic significance yielded the highest degree of classification agreement between acute and follow-up instantaneous wave-free ratio. CONCLUSIONS: In patients with ST-segment elevation myocardial infarction, acute instantaneous wave-free ratio with the cutoff values <0.90 for hemodynamic significance appears optimal in the evaluation of nonculprit stenoses and has a high negative predictive value and a moderate positive predictive value.info:eu-repo/semantics/publishedVersio

    Usefulness of Routine Fractional Flow Reserve for Clinical Management of Coronary Artery Disease in Patients With Diabetes

    No full text
    Importance: Approximately one-third of patients considered for coronary revascularization have diabetes, which is a major determinant of clinical outcomes, often influencing the choice of the revascularization strategy. The usefulness of fractional flow reserve (FFR) to guide treatment in this population is understudied and has been questioned. Objective: To evaluate the usefulness and rate of major adverse cardiovascular events (MACE) of integrating FFR in management decisions for patients with diabetes who undergo coronary angiography. Design, setting, and participants: This cross-sectional study used data from the PRIME-FFR study derived from the merger of the POST-IT study (Portuguese Study on the Evaluation of FFR-Guided Treatment of Coronary Disease [March 2012-November 2013]) and R3F study (French Study of FFR Integrated Multicenter Registries Implementation of FFR in Routine Practice [October 2008-June 2010]), 2 prospective multicenter registries that shared a common design. A population of all-comers for whom angiography disclosed ambiguous lesions was analyzed for rates, patterns, and outcomes associated with management reclassification, including revascularization deferral, in patients with vs without diabetes. Data analysis was performed from June to August 2018. Main outcomes and measures: Death from any cause, myocardial infarction, or unplanned revascularization (MACE) at 1 year. Results: Among 1983 patients (1503 [77%] male; mean [SD] age, 65 [10] years), 701 had diabetes, and FFR was performed for 1.4 lesions per patient (58.2% of lesions in the left anterior descending artery; mean [SD] stenosis, 56% [11%]; mean [SD] FFR, 0.81 [0.01]). Reclassification by FFR was high and similar in patients with and without diabetes (41.2% vs 37.5%, P = .13), but reclassification from medical treatment to revascularization was more frequent in the former (142 of 342 [41.5%] vs 230 of 730 [31.5%], P = .001). There was no statistical difference between the 1-year rates of MACE in reclassified (9.7%) and nonreclassified patients (12.0%) (P = .37). Among patients with diabetes, FFR-based deferral identified patients with a lower risk of MACE at 12 months (25 of 296 [8.4%]) compared with those undergoing revascularization (47 of 257 [13.1%]) (P = .04), and the rate was of the same magnitude of the observed rate among deferred patients without diabetes (7.9%, P = .87). Status of insulin treatment had no association with outcomes. Patients (6.6% of the population) in whom FFR was disregarded had the highest MACE rates regardless of diabetes status. Conclusions and relevance: Routine integration of FFR for the management of coronary artery disease in patients with diabetes may be associated with a high rate of treatment reclassification. Management strategies guided by FFR, including revascularization deferral, may be useful for patients with diabetes.info:eu-repo/semantics/publishedVersio

    Nonculprit Stenosis Evaluation Using Instantaneous Wave-Free Ratio in Patients With ST-Segment Elevation Myocardial Infarction.

    No full text
    OBJECTIVES: The aim of this study was to examine the level of agreement between acute instantaneous wave-free ratio (iFR) measured across nonculprit stenoses in patients with ST-segment elevation myocardial infarction (STEMI) and iFR measured at a staged follow-up procedure. BACKGROUND: Acute full revascularization of nonculprit stenoses in STEMI is debated and currently guided by angiography. Acute functional assessment of nonculprit stenoses may be considered. METHODS: Immediately after successful primary culprit intervention for STEMI, nonculprit coronary stenoses were evaluated with iFR and left untreated. Follow-up evaluation with iFR was performed at a later stage. iFR <0.90 was considered hemodynamically significant. RESULTS: One hundred twenty patients with 157 nonculprit lesions were included. Median acute iFR was 0.89 (interquartile range [IQR]: 0.82 to 0.94; n = 156), and median follow-up iFR was 0.91 (interquartile range: 0.86 to 0.96; n = 147). Classification agreement was 78% between acute and follow-up iFR. The negative predictive value of acute iFR was 89%. Median time from acute to follow-up evaluation was 16 days (IQR: 5 to 32 days). With follow-up within 5 days after STEMI, no difference was observed between acute and follow-up iFR, and classification agreement was 89%. With follow-up ≥16 days after STEMI, acute iFR was lower than follow-up iFR, and classification agreement was 70%. CONCLUSIONS: Acute iFR evaluation appeared valid for ruling out significant nonculprit stenoses in patients with STEMI undergoing primary percutaneous coronary intervention. The time interval from acute to follow-up iFR influenced classification agreement, suggesting that inherent physiological disarrangements during STEMI may contribute to classification disagreement.info:eu-repo/semantics/publishedVersio

    Comparison of Major Adverse Cardiac Events Between Instantaneous Wave-Free Ratio and Fractional Flow Reserve-Guided Strategy in Patients With or Without Type 2 Diabetes: A Secondary Analysis of a Randomized Clinical Trial.

    No full text
    ClinicalTrials.gov identifier: NCT02053038.IMPORTANCE: Invasive physiologic indices such as fractional flow reserve (FFR) and instantaneous wave-free ratio (iFR) are used in clinical practice. Nevertheless, comparative prognostic outcomes of iFR-guided and FFR-guided treatment in patients with type 2 diabetes have not yet been fully investigated. OBJECTIVE: To compare 1-year clinical outcomes of iFR-guided or FFR-guided treatment in patients with and without diabetes in the Functional Lesion Assessment of Intermediate Stenosis to Guide Revascularization (DEFINE-FLAIR) trial. DESIGN, SETTING, AND PARTICIPANTS: The DEFINE-FLAIR trial is a multicenter, international, randomized, double-blinded trial that randomly assigned 2492 patients in a 1:1 ratio to undergo either iFR-guided or FFR-guided coronary revascularization. Patients were eligible for trial inclusion if they had intermediate coronary artery disease (40%-70% diameter stenosis) in at least 1 native coronary artery. Data were analyzed between January 2014 and December 2015. INTERVENTIONS: According to the study protocol, iFR of 0.89 or less and FFR of 0.80 or less were used as criteria for revascularization. When iFR or FFR was higher than the prespecified threshold, revascularization was deferred. MAIN OUTCOMES AND MEASURES: The primary end point was major adverse cardiac events (MACE), defined as the composite of all-cause death, nonfatal myocardial infarction, or unplanned revascularization at 1 year. The incidence of MACE was compared according to the presence of diabetes in iFR-guided and FFR-guided groups. RESULTS: Among the total trial population (2492 patients), 758 patients (30.4%) had diabetes. Mean age of the patients was 66 years, 76% were men (1868 of 2465), and 80% of patients presented with stable angina (1983 of 2465). In the nondiabetes population (68.5%; 1707 patients), iFR guidance was associated with a significantly higher rate of deferral of revascularization than the FFR-guided group (56.5% [n = 477 of 844] vs 46.6% [n = 402 of 863]; P < .001). However, it was not different between the 2 groups in the diabetes population (42.1% [n = 161 of 382] vs 47.1% [n = 177 of 376]; P = .15). At 1 year, the diabetes population showed a significantly higher rate of MACE than the nondiabetes population (8.6% vs 5.6%; adjusted hazard ratio [HR], 1.88; 95% CI, 1.28-2.64; P < .001). However, there was no significant difference in MACE rates between iFR-guided and FFR-guided groups in both the diabetes (10.0% vs 7.2%; adjusted HR, 1.33; 95% CI, 0.78-2.25; P = .30) and nondiabetes population (4.7% vs 6.4%; HR, 0.83; 95% CI, 0.51-1.35; P = .45) (interaction P = .25). CONCLUSIONS AND RELEVANCE: The diabetes population showed significantly higher risk of MACE than the nondiabetes population, even with the iFR-guided or FFR-guided treatment. The iFR-guided and FFR-guided treatment showed comparable risk of MACE and provided equal safety in selecting revascularization target among patients with diabetes.info:eu-repo/semantics/publishedVersio

    Evaluation and Management of Nonculprit Lesions in STEMI

    No full text
    Nonculprit lesions are frequently observed in patients with ST-segment elevation myocardial infarction. Results from recent randomized clinical trials suggest that complete revascularization after ST-segment elevation myocardial infarction improves outcomes. In this state-of-the-art paper, the authors review these trials and consider how best to determine which nonculprit lesions require revascularization and when this should be performed.info:eu-repo/semantics/publishedVersio

    Predictive factors of discordance between the instantaneous wave-free ratio and fractional flow reserve.

    No full text
    OBJECTIVES: To identify clinical, angiographic and hemodynamic predictors of discordance between instantaneous wave-free ratio (iFR) and fractional flow reserve (FFR). BACKGROUND: The iFR was found to be non-inferior to the gold-standard FFR for guiding coronary revascularization, although it is discordant with FFR in 20% of cases. A better understanding of the causes of discordance may enhance application of these indices. METHODS: Both FFR and iFR were measured in the prospective multicenter CONTRAST study. Clinical, angiographic and hemodynamic variables were compared between patients with concordant values of FFR and iFR (cutoff ≤0.80 and ≤0.89, respectively). RESULTS: Out of the 587 patients included, in 466 patients (79.4%) FFR and iFR agreed: both negative, n = 244 (41.6%), or positive, n = 222 (37.8%). Compared with FFR, iFR was negative discordant (FFR+/iFR-) in 69 (11.8%) patients and positive discordant (FFR-/iFR+) in 52 (8.9%) patients. On multivariate regression, stenosis location (left main or proximal left anterior descending) (OR: 3.30[1.68;6.47]), more severe stenosis (OR: 1.77[1.35;2.30]), younger age (OR: 0.93[0.90;0.97]), and slower heart rate (OR: 0.59[0.42;0.75]) were predictors of a negative discordant iFR. Absence of a beta-blocker (OR: 0.41[0.22;0.78]), older age (OR: 1.04[1.00;1.07]), and less severe stenosis (OR: 0.69[0.53;0.89]) were predictors of a positive discordant iFR. CONCLUSIONS: During iFR acquisition, stenosis location, stenosis degree, heart rate, age and use of beta blockers influence concordance with FFR and should be taken into account when interpreting iFR.info:eu-repo/semantics/publishedVersio

    Is Alzheimer's Disease Infectious?<br><i>Relative to the CJD Bacterial Infection Model of Neurodegeneration</i>

    No full text
    corecore